

October 11th -12th, 2004

The Influence of Magnetic Order to Crystal Nucleation

Sven Reutzel ^{1, 2}, Dirk Holland-Moritz ², Matthias Kolbe ², Dieter M. Herlach ²

¹ Ruhr-University Bochum, Germany

² German Aerospace Center (DLR), Cologne, Germany

<u>Corresponding Author</u>: sven.reutzel@dlr.de www.dlr.de/rs/forschung/uk Tel.: +49 (0) 2203 601 3047 Fax: +49 (0) 2203 501 2255

Motivation

- 1 Thermodynamics of Undercooled Metallic Melts
- 2 Classical Nucleation Model
- **3 Magnetic Influence on Nucleation**
- II Thermomagnetic Analyses 1 Method of Measurement 2 Experiments on **Co**, **Co-Pd** and **Co-Au**
- III Résumé
- **1** Experimental Results
- 2 Modification of Existing Classical Nucleation Model

1st Order Phase Transition: Solid $\leftarrow \rightarrow$ Liquid

Driving Force to Nucleation $\rightarrow \Delta G(p,T) = G_{liquid} - G_{solid}$

Activation Energy for Nucleation:

$$\Delta \mathbf{G}^* = \frac{16}{3} \pi \cdot \frac{\sigma^3}{(\Delta \mathbf{G}_{\mathsf{V}})^2}$$

Gibbs Free Energy Difference

Solid-Liquid Interfacial Energy

$$\sigma(\mathbf{T}) = \alpha \cdot \frac{\Delta S_{f} \cdot \mathbf{T}}{(N_{A} \cdot V_{mol}^{2})^{\frac{1}{3}}}$$

[Spaepen, Acta Metall. 23, (1975) 729]

Crystal Nucleation Rate:

$$I_{ss} = k_V \cdot e^{-f(\theta)} \cdot \frac{\Delta G^*}{k_B T}$$

Nucleation Event:

 $I_{SS}(T_N) \cdot V \cdot t_N \geq 1$

Motivation

DLR

Undercooling of **Co-Pd** Alloys by Different Processing Techniques:

Differential Thermal Analysis

[Wilde, PhD-thesis, Technical University Berlin (1997)]

Electromagnetic Levitation

[Herlach et al., J.Non-Cryst.Sol. **250-252** (1999) 271]

Motivation

Electromagnetic Levitation of Co-Pd Melts

Nucleation Statistics \rightarrow Observation of Magnetically Induced Crystallisation

[Schenk et al., Europhys. Lett. 50, 3, (2000), 402] [Holland-Moritz et al., MRS Proceedings 580, (2000), 393]

Sketch of Constructed Faraday-Balance

[Reutzel, Herlach, Adv. Eng. Mat. **3**, 1-2, (2001), 65]

Magnetic Force Equation –

 $F_{Z}(T) = \mu_{0} \cdot \rho \cdot V \cdot H_{0} \cdot \frac{\partial \overline{H}}{\partial \overline{r}} \cdot \chi(T)$

const. const.

Front View of Constructed Faraday-Balance

Technical Data:

Resolution 2 µg at 20 g Load

Temperature Range 300 K < T < 2000 K

 $\begin{array}{l} \text{Magnetic Field} \\ \text{H} \leq 1.2 \text{ T} \end{array}$

Calibration on **Cobalt**

Temperature [K]

Completely Miscible Alloy System Co-Pd

Eutectic Alloy System Co-Au

Equilibrium Phase Diagram

Eutectic Alloy System Co-Au

Eutectic Alloy System Co-Au

Inverse Magnetic Susceptibility of Co₉₀Au₁₀

Eutectic Alloy System Co-Au

Inverse Magnetic Susceptibility of Co_{100-x}Au_x Alloys

Magnetic Properties of Undercooled Co-Au Alloys

[Reutzel, Herlach, Mat. Sci. Eng. A, 375-377, (2004), 552]

△G* Lowered by Magnetic Contribution!

- Precise Detection of Magnetic Properties of Undercooled **Co** and **Co-Pd-** & **Co-Au-**Alloy Melt at Elevated Temperatures!
- II Detected Curie-Temperatures of Liquid Phase of Cobalt and of Co-Pd- & Co-Au-Alloy Systems Correspond to Maximum Undercooling Levels
- III Crystal Nucleation in Undercooled Liquid Affected by Onset of Magnetic Ordering
- IV Formulation of Extended Nucleation Model Useful to Describe Limited Experimental Undercooling Levels

Contributors

G.P. Görler T. Volkmann

Project Funded by

Deutsche Forschungsgemeinschaft **DFG**