Institut für Sicherheitsforschung

Safety Aspects of the Process Control of Grignard Reactions

G. Hessel, H. Kryk, W. Schmitt, N. Tefera

Motivation and objectives

Hazard potentials of Grignard Reactions:

- very high reaction enthalpy
- · spontaneous heat release during initiation stage
- · delayed reaction start due to traces of impurities
- · exothermic consecutive reactions of Grignard reagents with impurities

Industrially applicable on-line methods for:

- · objective detection of reaction start-up
- monitoring of educt accumulation during the semibatch process

Experiments

Development and test of monitoring methods by Grignard Reaction experiments in a closed reaction calorimeter (RC1/HP60, without reflux equipment)

In-situ concentration measurements using FTIR-spectrometer ReactIR1000

On-line detection of Grignard Reactions in pressurised STR

Primary process signals

In isoperibolic process mode, reactor temperature and pressure can be used to detect the reaction start-up as well as the start of the main reaction.

On-line FTIR spectroscopy

By using an in-situ FTIR spectrometer, the concentration profiles of liquid reactants and/or products can be used to monitor the process.

Balance-based monitoring

Estimation of concentration profiles by using heat/ mass balance-based on-line monitoring systems

By defining a threshold concentration of the halide, full automated process control is possible.

method	primary process signals (p _R , T _R)	on-line FTIR-spectroscopy (qualitative)	on-line FTIR-spectroscopy (quantitative)	balance-based monitoring
start-up detection	+	+	+	+
quantitative monitoring	-	-	+	+
pros	easy to use cost-efficient	independent of process control	independent of process control	cost-efficient virtually independent of process control (pressurised STR recommended)
cons	dependent on process control misinterpretations possible	high investment cost high operating costs local measurement	high investment cost high operating costs high calibration effort local measurement	advanced knowledge of process and plant parameters required

Conclusions

- on-line monitoring of Grignard processes in closed STR based on primary process signals, FTIR spectroscopy and heat/mass balance-based monitoring systems possible
- · advanced quantitative on-line monitoring methods opens up new perspectives towards full automated process control of Grignard reactions
- Recommendation: process control in closed (pressurised) STR without reflux cooling system
 - on-line monitoring using heat/mass balance-based systems (i.e. MoSys*)
 - * MoSys: On-line Monitoring System using adaptive heat/mass balances developed by FZD/ Fraunhofer Institut Umsicht/ Degussa AG