

Multi-color visible laser using Pr doped fluoride glass excited by GaN laser diode

Yasushi Fujimoto

Institute of Laser Engineering, Osaka University

Masaaki Yamazaki

Sumita Optical Glass, Inc., Glass Research Division, R&D Depertment

5th Workshop on High Energy Class Diode Pumped Solid State Lasers, June 10th -12th Forschungszentrum Dresden Rossendorf, Dreseden, Germany

Outline

Back ground

- Motivation
- Pr visible laser and excitation source
- fluoride glasses

Pr doped fluoride glass (Pr:PAYAC)

- Spectroscopic properties of Pr³⁺ doped fluoride glass
- Stimulated emission cross section by Judd-Ofelt analysis
- Laser oscillation
- Applications
- Conclusions

Outline

Back ground

- Motivation
- Pr visible laser and excitation source
- fluoride glasses
- Pr doped fluoride glass (Pr:PAYAC)
 - Spectroscopic properties of Pr³⁺ doped fluoride glass
 - Stimulated emission cross section by Judd-Ofelt analysis
 - Laser oscillation
- Applications
- Conclusions

Motivation

Applications on visible lasers

- 1) Display technique
- 2) Medical equipments
- 3) Spectroscopy, and microscopy
- 4) Welding and cutting with several tens to hundreds watt

Research on Pr³⁺ lasers

- 1) Smart et al.[1] reported laser oscillation of Pr:ZBLAN fiber
- 2) Richter et al.[2] reported Pr doped fluoride crystal lasers excited by GaN semiconductor lasers.
- 3) High power laser diode (GaN:442 nm) is provided by Nichia Corporation (up to 1 W).

Progress in fluoride glass

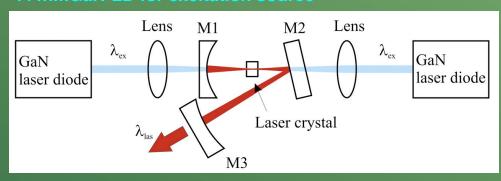
- 1) Water-resistant fluoride glass was fabricated by AIF₃ glass system.
- 2) An optical fiber was drawn by AIF₃ glass system.

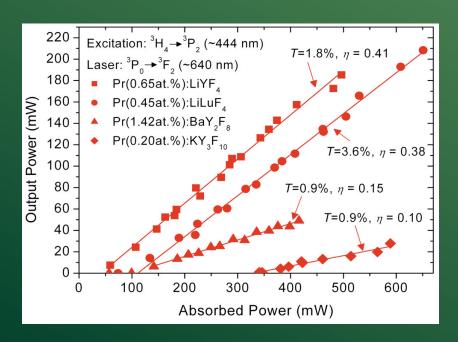
It is very curious that a visible laser emission is generated without nonlinear crystal. Then we tested the possibility of Pr-doped fiber laser.

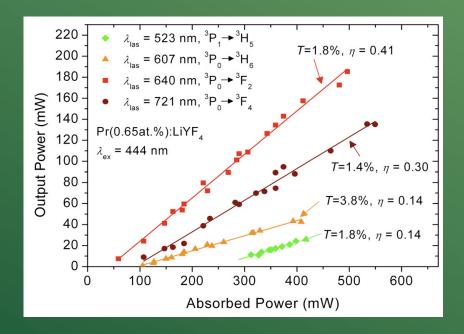
^[1] R. G. Smartet al., "Cw Room-Temperature Operation of Praseodymium-Doped Fluorozirconate Glass-Fiber Lasers in the Blue-Green, Green and Red Spectral Regions," Optics Communications 86(3-4), 333-340 (1991).

^[2] A. Richter et al., "Power scaling of GaN laser diode pumped Pr-lasers", in *Advanced Solid-State Photonics on CD-ROM* (The Optical Society of America, Washington, DC, 2008), MB2

Pr³⁺ Laser

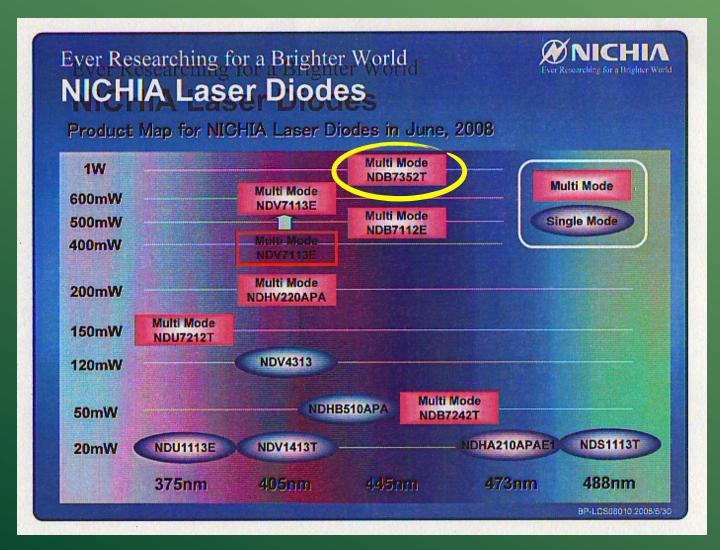



2008ASSP


Power scaling of GaN laser diode pumped Pr-lasers

A. Richter, E. Heumann, and G. Huber Äb0 Institute of Laser-Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Åi0 a.richter@physnet.uni-hamburg.de Äi0 D. Parisi, and M. Tonelli Äb0 NEST and Dipartimento di Fisica dell' Universita di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy Äi0

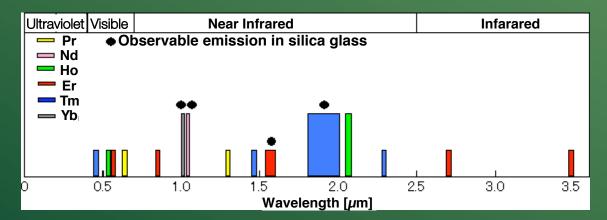
444nmGaN-LD for excitation source



Pr doped laser excited by 444-nm GaN-LD. The slope efficiency reached to 41% at 640nm.

Progress in Blue LD development

1-W blue LD at 445 nm is now available for excitation source.


Why fluoride glass?

In general, fluoride glasses show poor chemical durability, especially weak water-resistance.

Advantage of fluoride glass

- 1) low refractive index (1.3-1.5)
- 2) low dispersion of refractive index
- 3) low phonon energy
- 4) wide band transmittance (200-3500nm) (in case of silica glass; 200-2200nm)

Many rare-earth elements can emit in fluoride glass due to low phonon energy.

Summary of fluoride glasses

BeF₂

BeF₂ is vitrified by single component (1950).

Disadvantage -> Low water-resistant property and toxicity.

ZrF₄(HfF₄) system

Discovery of vitrification by ZrF₄·BaF₂·NaF in 1975.

Then, an optical fiber is drawn by

ZrF₄·BaF₂·LaF₃·AlF₃·NaF(ZBLAN).

Disadvantage -> Low water-resistant property and low transition temperature (Tg 250-300°C).

○ AIF₃ system

AIF₃•YF₃•CaF₂•BaF₂ glass system shows water-resistant property and higher transition temperature (Tg 350-400°C). Disadvantage -> difficulty in crystallization.

Others

ThF₄, GaF₃, InF₃, ZnF₂, CdF₂ glass system

Progress on fluoride glass

- 1. Chemical durability (water-resistance)
 - 1) Water-resistant property of AIF₃ system glass is remarkably increased compared to ZABLAN glass.
 - 2) Water is used in polishing treatment.

TABLE IV. Properties of AlF3-based glasses compared with ZBLAN glass (bulk glasses).

Glass system	Refractive index (n_d)	Cutoff wavelength $(t = 4 \text{ mm})$		Specific gravity	Wt. loss at 23 °C	Young's modulus	Knoop hardness	Poisson's
		$UV (T = 50\%) (\mu m)$	$IR (T = 50\%) (\mu m)$	(g/cm^3)	%/24 h	$E (Kg/mm^2)$	H (Kg/mm ²)	ratio
ABCYS	1.436	0.29	6.08	3.90	0.01	5720	370	0.31
ABCYSNZ	1,445	0.195	6.94	3.85	0.10	6500	315	0.31
BATY	1.487	0.21	7.10	4.36	0.03	6021	• • • •	0.31
ZBLAN	1.497	0.20	7.57	4.34	5.23	5380	225	0.31

2. AIF₃ system glass can be drawn to an optical fiber by way of suppressing crystallization.

Possibility of fiber drawing using AIF₃ system glass with water-resistant property

Outline

Back ground


- Motivation
- Pr visible laser and excitation source
- fluoride glasses

Pr doped fluoride glass (Pr:PAYAC)

- Spectroscopic properties of Pr³⁺ doped fluoride glass
- Stimulated emission cross section by Judd-Ofelt analysis
- Laser oscillation
- Applications
- Conclusions

Photograph of Pr:PAYAC

Pr doping = 3000 [ppm]

Number density = 5.94×10^{19} [#/cm²]

Density = 4.63 [g/cm³]

Refractive index =

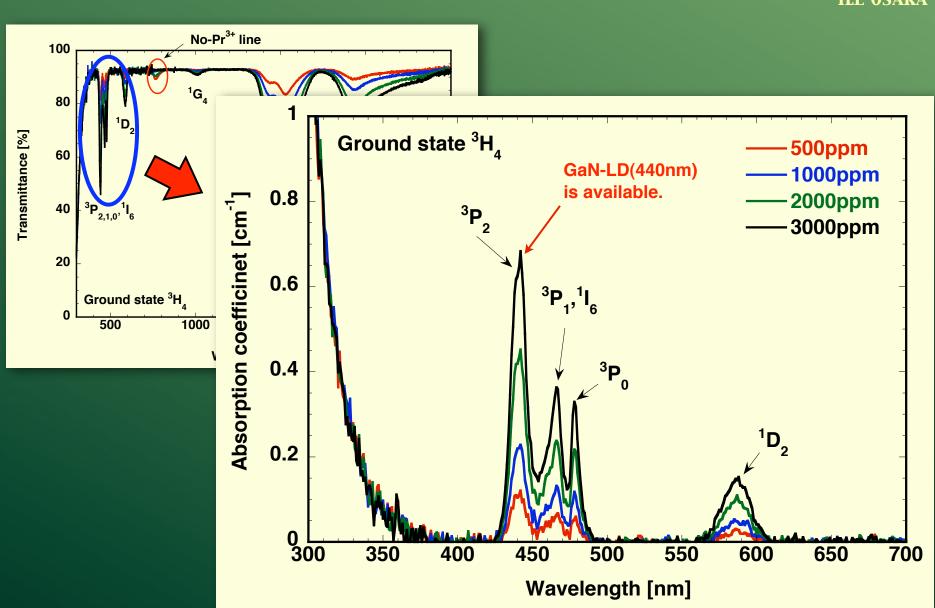
 $1.49760@0.52\mu\text{m},$

 $1.49358@0.605\mu\text{m}$,

 $1.49237@0.64\mu m$,

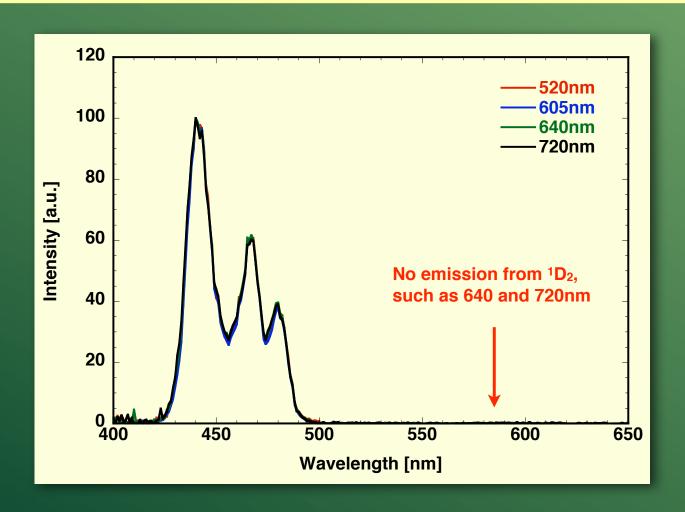
1.49023@0.72µm

Pr:PAYAC is provided by Sumita Optical Glass, Inc.



The refractive index is conformable to silica fiber. The connection loss is estimated to be 0.02% in PC-contact.

This glass is successfully drawn for an optical fiber.


Absorption spectrum Pr:PAYAC (1)

Excitation spectra of Pr:PAYAC(3000ppm)

Excitation spectra are bery similar to absorption spectra except ³H₄ -> ¹D₂ transition. Therefore, initial state of fluorescence at 520, 605, 635, 720 nm is ³P_{1,0}.

Transition assignment on Pr:PAYAC and energy diagram of Pr³⁺

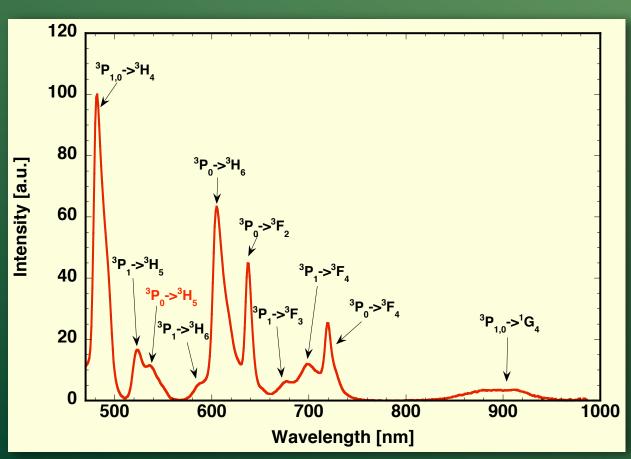


Fig.1 Transition assignment on Pr:PAYAC

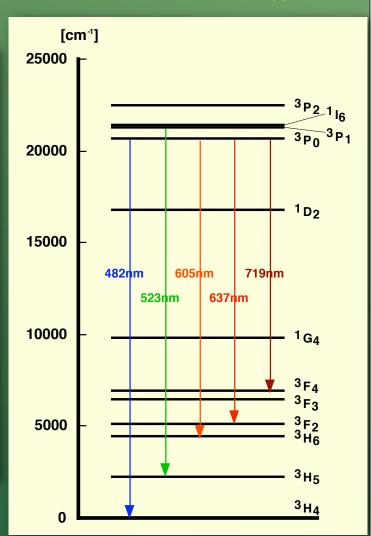
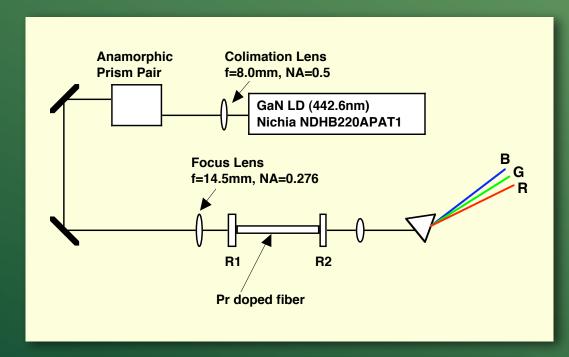


Fig.2 Energy diagram of Pr³⁺

Judd-Ofelt analysis results on Pr:PAYAC

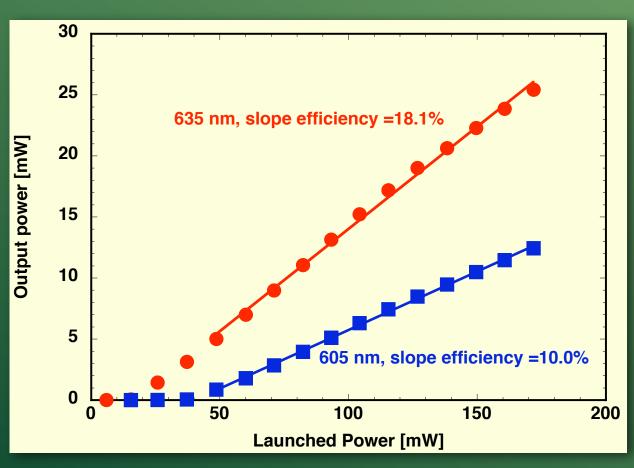


Transition	Bandwidth [nm]	Level System	Peak wavelength [nm]	Effective line width Δλ [nm]	Stimulated emission cross section $\sigma \left[\times 10^{-20} \text{cm}^2 \right]$	Transition probability [s-1]
$^{3}P_{1,0} \rightarrow ^{3}H_{4}$	466~510	Quasi-three	482	15.3	2.73	12640
$^{3}P_{1,(0)} \rightarrow {}^{3}H_{5}$	510~566	Four	523	23.8	0.51	2528
$^{3}P_{1,0} \rightarrow ^{3}H_{6}$ $^{3}P_{1} \rightarrow ^{3}F_{2}$	566~630	Four	605	18.9	1.41	3252
${}^{3}P_{0} \rightarrow {}^{3}F_{2}$	630~660	Four	637	10.3	1.55	1600
${}^{3}P_{1,0} \rightarrow {}^{3}F_{3}$ ${}^{3}P_{1} \rightarrow {}^{3}F_{4}$	660~710	Four	698	29.9	0.41	902.5
${}^{3}P_{0} \rightarrow {}^{3}F_{4}$	710~800	Four	719	13.9	2.67	2279
${}^{3}P_{1,0} \rightarrow {}^{1}G_{4}$	800~1000	Four	913	77.8	0.19	392.1

- 1) Calculated Ω parameters $\Omega_2 = 0.95 \times 10^{-20} \text{ [cm}^2], \Omega_4 = 4.76 \times 10^{-20} \text{ [cm}^2], \Omega_6 = 5.12 \times 10^{-20} \text{ [cm}^2]$
- 2) Calculated Lifetime $\tau = 40.7 \ [\mu s]$
- 3) Measured Lifetime $\tau = 30-50 [\mu s]$
- 4) Calculated quantum yield η>73.7%

Experimental setup of Pr-doped fiber laser oscillation.

Pr-doped fiber specification Pr concentration; 3000 ppm Core diameter; 6 μ m NA; 0.28 length; 4 cm (inserted into a zirconia-ferrule)


3.4.	Reflectivity [%]							
Mirror #	440 nm	490 nm	522 nm	605 nm	635 nm	719 nm		
#1	5.2	20	99.98	100	100	63.5		
#2	1.5	1.8	0.4	43.6	79.4	0.9		
#3	3.2	63.7	99.98	2	1.8	0.9		
#4	4.6	40.5	96.7	1.9	2.3	3.4		
#5	5.1	99.9	99.98	37.5	54.3	21.9		
#6	3.1	90.1	4.4	1.9	5.9	2		

Mirror selection

635 nm; R1 => #1, R2 => #2 605 nm; R1 => #1, R2 => #2 523 nm; R1 => #3, R2 => #4 635 nm; R1 => #5, R2 => #6

Laser oscillation in visible region

The 523 and 488 nm output power was obtained to be 1.0 and 0.7 mW, respectively, however the output power is unstable.

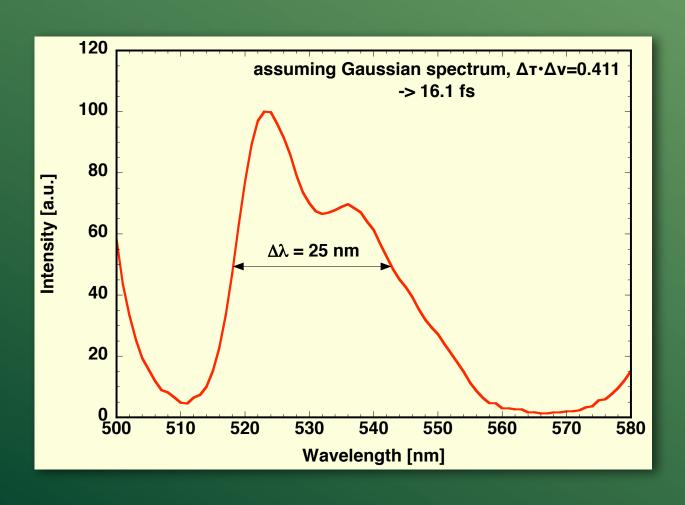
Pr:PAYAC covers wider area than sRGB liquid crystal display, therefore, color reproducibility is better than sRGB.

Outline

Back ground

- Motivation
- Pr visible laser and excitation source
- fluoride glasses

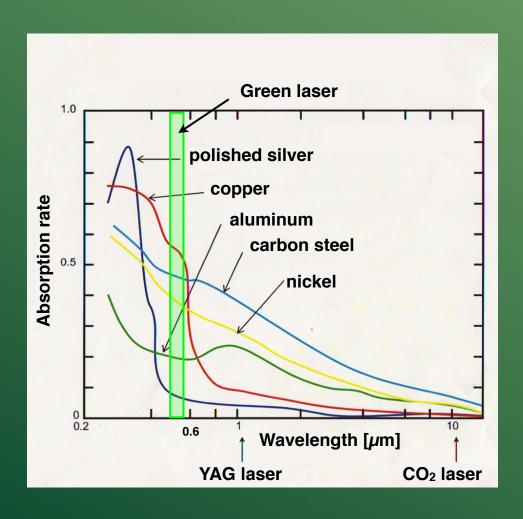
Pr doped fluoride glass (Pr:PAYAC)


- Spectroscopic properties of Pr³⁺ doped fluoride glass
- Stimulated emission cross section by Judd-Ofelt analysis
- Laser oscillation

Applications

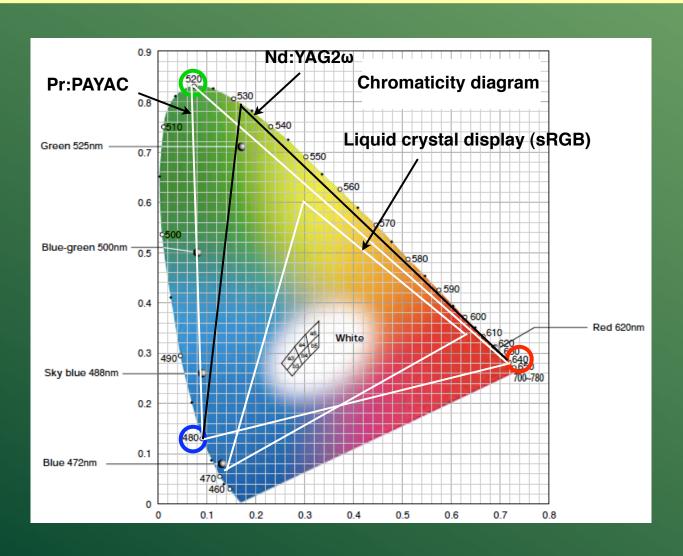
• Conclusions

Application (1) -Short pulse laser operation-



Spectral width of Pr:PAYAC at 523nm emission is 25 nm. A short pulse laser operation is expected.

Application (2) -Absorption rate of metal materials-


for copper 520nm:50-60% 630nm:20% 1μm:10% 10μm:1%

Laser wavelength under 0.6 μ m is useful for copper welding and cutting.

Application (3) -for display use-

Pr:PAYAC covers wider area than sRGB liquid crystal display, therefore, color reproducibility is better than sRGB.

Conclusions

- We demonstrated multi-colored laser oscillation in Pr³⁺-doped fluoroaluminate glass fiber pumped by 440 nm GaN-semiconductor laser at 488, 523, 605, 635nm.
- The slope efficiency of laser oscillation at 635-nm ofn 605-nm are 18.1% and 10.0%.
- The stimulated emission cross section o Pr³⁺ doped fluoride glass (Pr:PAYAC) with water-resistant property by Judd-Ofelt analysis.
- Future plan
 - Simulation of laser oscillation of Pr doped fiber laser
 - High power laser oscillation experiment

Thank you for your attention!