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Abstract

Field ionization plays an important role in modeling the interaction of high-power, ultra-short
lasers pulses with matter. Many field ionization models exist that have predictive capability
at non-relativistic laser intensities and for laser pulse durations that much longer than the
atomic time scales. Most existing models take a quasi-static approach to the laser field on
atomic dimensions and time scales. Yet, with pulses as short as a few ~10 to ~100 as and
intensities of 1021 W/cm2 the feasibility of these approximations becomes questionable. Still
the exploration of plasma effects in relativistic laser matter interaction requires to test the
boundaries of validity for these models. This thesis will take a step to point out the difficulties
to be considered when existing ionization models are applied to such extreme cases.

Zusammenfassung

Feldionisation spielt eine wichtige Rolle in der Modellierung der Wechselwirkung hochinten-
siver, ultrakurzer Laserpulse mit Materie. Es existieren bereits zahlreiche Modelle, die akku-
rate Vorhersagen im Bereich nicht-relativistischer Intensitäten und oberhalb atomarer Zeit-
skalen treffen können. Diese begegnen dem Laser-Feld mit einem quasi-statischen Ansatz auf
atomaren Längen- und Zeitskalen. Unter der Einwirkung von Laserpulsen im Bereich weniger
~10 bis ~100 as und Intensitäten von 1021 W/cm2 ist die Anwendbarkeit der getroffenen An-
nahmen jedoch fragwürdig. Dessen ungeachtet ist es notwendig, die Gültigkeit der Modelle
hinsichtlich relativistischer Laser-Materie-Wechselwirkung zu testen. Diese Arbeit gibt einen
Einblick in die Schwierigkeiten, die bei der Anwendung existierender Ionisationsmodelle auf
extreme Szenarien beachtet werden sollten.
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1 Motivation

Particle-in-Cell (PIC) codes are important in the simulation of laser-matter interaction. Today
scientists are able to produce laser pulses of relativistic peak intensities and below-femtosecond
duration. A property of such pulses are large intensity gradients both in time and space.
Therefore, the question arises if existing field ionization models manage to describe the pro-
cesses correctly and how the models perform in comparison to each other. In this thesis three
commonly used field ionization models will be examined to look for possible problems in the
application of these non-relativistic models to extreme scenarios. To point out problems to
be considered in PIC simulations when the models are pushed to their limits will be the main
focus of this thesis.

List of abbreviations

AU Atomic Units

PIC Particle-In-Cell

SE Schrödinger equation

MPI Multiphoton Ionization

ATI Above Threshold Ionization

TI Tunneling Ionization

BSI Barrier Suppression Ionization

LOPT Lowest-Order Perturbation-Theory

LL Landau-Lifshitz

K Keldysh

ADK Ammosov-Delone-Krainov

Table 1.1: List of abbreviations.





2 Introduction

This thesis focuses on the comparison of three commonly used field ionization models. It
aims to representatively point out issues in laser-matter interaction simulations for short,
high intensity laser pulses. Therefore the physical effects of ionization by an electromagnetic
field are briefly introduced in chapter 3. In the beginning the unit system of atomic units is
introduced and the two major effects, multi-photon and field ionization, are explained. Then
three commonly used models for field ionization are discussed, namely the model by Landau
and Lifshitz [11], the theory of Keldysh [9] and a younger variant of the well-known ADK [2]
model which was modified by Krainov [10]. After this introduction the simulation methods
for evaluating these models are presented, followed by a presentation of the results and their
discussion.

Figure 2.1: Extract from a text file containing charge states generated by a Monte-Carlo
simulation of a laser pulse interacting with a 1D sample of particles.

The analysis is concluded by applying the models to a Monte-Carlo simulation of field ioniza-
tion using a Gaussian temporal and spatial profile, showing that in fact the resulting spatio-
temporal charge state distributions differ when applying the various field ionization models.
Finally an outlook is given on the consequences of the presented results for plasma simulations.





3 Theory

3.1 Atomic units
Atomic units (AU) form a unit system which aims to simplify the equations describing atomic
processes on their respective time-, length- or energy scale. At the same time they give a
feeling for how the characteristics that are considered relate to atomic scales. They allow to
assess if a process is slow or fast, a length is small or large compared to atomic dimensions.
The derivation of the system is explained well in ref. [12].
From the table 3.1 it can be seen that this conversion is what is usually meant by the loose
phrase "e, ~ and 𝑚e are set equal to unity ...".
To emphasize their usefulness, take the laser wavelength of 1µ𝑚, which in AU is 1.9 · 104

and thus very large compared to the spatial dimension of an atom. Consequently the laser
frequency of 0.0456 AU is very small compared to the electron orbital frequency in hydrogen.
Thus AU can help to immediately asses which physical ionization effect is dominant in a given
scenario.



6 3 Theory

1 AU of equals in SI units phys. relevance

Mass 𝑚e 9.1094 · 10−31 kg electron mass

Length ~24𝜋𝜖0

e2𝑚3
= 𝑎0 0.5292 · 10−10 m 1st Bohr radius (H)

Time ~3(4𝜋𝜖0)2

𝑚ee4 2.4189 · 10−17 s ≈ 150 as
2𝜋

, classical
e−-orbit time (H)
modulo 2𝜋

Charge e 1.602 · 10−19 C electron charge

Action ~ 1.0546 · 10−34 Js quantum of angular mo-
mentum

Permittivity 4𝜋𝜖0 4𝜋 · 8.8542 · 10−12 C
Vm Coulomb constant

Energy 𝑚ee4

~2(4𝜋𝜖0)2 4.3598 ·10−19𝐽 = 27.21 eV 2 Rydberg = 2 x H ground
state binding energy

Velocity e2

~ 4𝜋𝜖0
2.1877 · 106 m

s = 𝛼𝑐 in AU speed of light
equals inverse fine struc-
ture const.

El. field 𝑚2
ee5

~4(4𝜋𝜖0)3 5.1422 · 1011 V
m classical H barrier sup-

pression field str.

Magn. flux density 𝑚2
ee3

~3(4𝜋𝜖0)2 2.3505 T value at center of H
atom by classically orbit-
ing electron

Intensity 𝑚4
ee12

8𝜋𝛼~9(4𝜋𝜖0)6 3.5095 · 1016 W
cm2 appearance intensity for

H

Table 3.1: Most common AU and their physical relevance. Additionally conversion factors
between atomic units and SI units have been listed.
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3.2 Basic Characteristics

3.2.1 Deriving an intensity from an oscillating electric field

Although the models that are discussed in this thesis use the local field strength at the position
of the atom to compute the ionization rate, it is intuitive to relate in field strength to an actual
laser intensity.
The intensity of an electromagnetic wave in general is calculated from the electric field strength
of the wave. In the description of this field an envelope function and a phase factor can be
separated.

𝐸(𝑡) = 𝐸env e𝑖Φ(𝑡). (3.1)

and the intensity is given by the absolute square of the field |𝐸|2 of the field. In the region of
very short pulses the validity of this simple approximation is questionable. The condition for
it to be feasible is that the oscillations of the field amplitude are fast against the change of the
envelope function.

Δ𝑇period

Δ𝑇pulse
≪ 1 ⇒ 𝐸(𝑡) = 𝐸env e𝑖𝜔0 e𝑖𝜙(𝑡) (3.2)

Only in this case the phase factor is separable into a factor containing the constant laser
frequency 𝜔0 and a function of the time dependent phase 𝜙(𝑡). To analytically calculate the
intensity of a pulse where approx. (3.2) does not hold one would have to integrate the sqared
absolute values of the field over time. The result is then normalized with the inverse pulse
duration.

𝐼 = 1
𝑇pulse

𝑇pulse∫︁
0

𝐸*(𝑡) · 𝐸(𝑡)d𝑡 (3.3)

Each spatial dimension requires an additional integration. As long as the condition in eq. (3.2)
holds the phase factor becomes unity. The field strengths can be set equal to effective field
strengths with a prefactor of 1/

√
2. Only when the condition is violated and the laser period

is nearly as long as the pulse duration both eq. (3.1) and eq. (3.3) have to be considered and
the root mean square method should no be used.

3.2.2 Ionization potential

The ionization potential plays an important role in the calculation of the ionization rates.
For constant external electric fields a higher ionization potential lowers the rate. Although
an analytical formula for each shell electron for each element of the PSE is too cumbersome
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to develop some general assertions can be undertaken for simplified cases e.g. hydrogen-like
atoms. The 𝑛-th shell energy level can either be evaluated semi-classical in the Bohr model
of atoms or quantum mechanically by computing the 𝑛-th matrix element of the Hamiltonian
with the solutions of the Schrödinger equation. The results in both cases are

ℰ𝑛 = − e4𝑚e

~2(4𝜋𝜖0)2
𝑍2

2𝑛2 , 𝑛 = 0, 1, 2, ... (SI units) (3.4)

= − 𝑍2

2𝑛2 (atomic units) (3.5)

Here 𝑛 is the principal quantum number and it can be seen that atomic units simplify the
expression greatly. A Coulomb-shaped atomic binding potential was assumed in the derivation
of these formulae. In reality this assumption has to be treated skeptically as the influence of
every external field changes the shape of the binding potential. This change in potential can
be accounted for if the Stark effect is taken into consideration [8]. It describes the removal
of degeneracy and shifting of energy levels in atoms and molecules due to an external electric
field. When determining the Stark shift, one has to consider whether the external field is
static or alternating. More on this matter can be found in the paper of Delone and Krainov [6]
where they examined the AC Stark shift in subatomic fields. They conclude that the Stark
shift deepens the potential well and makes the atoms harder to ionize.

𝛿ℰ𝑛(𝐹 ) = 𝐹 2

4𝜔2 (3.6)

Delone and Krainov also predict that its influence is lowest in noble gases and largest in alkali
atoms. This statement however is found to be valid only for the ground state energy level.
Note that instead of writing |ℰip| because the binding energies are negative, as a convention it
will be written ℰip, thus representing a positive amount of energy to be provided for ionization.

3.2.3 Ionization rate

The ionization rate Γ describes how many ionization processes per unit time occur. The
concept of an ionization rate is based on the approximation that for a limited amount of
time the conditions enforcing the ionization process can be treated as constant. Since the
invention of the laser multiple models have been developed to describe ionization. In the
following the most important atomic and laser properties required to calculate ionization rates
are introduced.

Laser characteristics

The ...
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Intensity 𝐼 and field strength 𝐸 characterize the power of the laser pulse in time and space.
Although the local field strength at the location of the atoms will be used in the calculation
of the rates, for reasons of simplicity it is here regarded as equal to the laser field strength.

Photon energy 𝜔 can be either calculated from the laser wavelength or the respective wave
number.

Ponderomotive potential 𝑈p. It describes the strength of the oscillatory motion of the free
electron in an external alternating electric field. The strength of the ponderomotive potential
determines which physical process of ionization is prominent.

Polarization of the laser. Many recent approaches on field ionization show that there are
differences in the ionization rate depending on whether linearly, circularly or elliptically po-
larized light is used. [5]

Atom characteristics

Ionization dynamics depend not only on the laser properties but also on the properties of the
atomic species in question, such as: the ionization potential ℰip, the atomic number 𝑍 and
the principal quantum number 𝑛. Some ionization models also contain angular and magnetic
quantum number of the electron [5].

3.2.4 Ionization probability

From a semi-classical point of view an electron which is ionized has to pass multiple energy
levels in the atomic shell until it finally reaches the free continuum state. Ionization can
therefore be treated as a sequence of stimulated processes which are opposite to spontaneous
emission. As it is a rare process spontaneous emission exhibits low statistics and can be
described as a Poisson process and as such follows an exponential distribution. If only two
levels are considered, then the probability for a transition from a higher atomic level to a lower
level is as follows:

𝑃spontaneous = e−ΓΔ𝑡 (3.7)

In the argument of the exponential function the Greek letter Γ indicates the natural linewidth
of the atomic transition. The Δ𝑡 represents a time step during which the conditions of the
system remain approximately the same. This expression then denotes the probability for the
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spontaneous emission process, therefore the probability for excitation reads:

𝑃induced = 1 − e−ΓΔ𝑡 (3.8)

In the course of this thesis we will consider ionization as a Poissonian process similar to atomic
excitation. Following Bauer and Mulser [3] the probability for the electron to remain bound
will also be assumed to be

𝑃bound(𝑡) = exp
⎛⎝−

𝑡∫︁
0

Γ[𝐸(𝑡′)]𝑑𝑡′

⎞⎠ . (3.9)

Here Γ should be understood as a rate for transitions from the bound to the continuum state.
For discrete values of Γ and no explicit time-dependency of the rates eq. (3.9) reduces to eq.
(3.7). Then the probability for the electron to leave the atom, provided in [3]

𝑃ionization = 1 − 𝑃bound = 1 − exp(ΓΔ𝑡). (3.10)

will be the main formula for calculating ionization probabilities in this thesis. It should be
pointed out that although this method is commonly used, it is strictly not valid in scenarios
where the Coulomb field of the atom is strongly perturbed by the laser field, as the ionization is
not well described by successive excitations to the continuum. In such a case a fully quantum
mechanical treatment based on the S-matrix theory by Fermi [17] should be used to relate
the bound state in an atom to the the free continuum state of the electron. By applying this
method the transition is performed in one step and the square of this transition matrix results
in the ionization probability. This method does not imply the existence of an ionization rate
which might be helpful if the conditions of the system vary rapidly.

3.3 Physical Ionization effects
In the following several ionization effects and the constraints on the laser pulse properties
𝜔, ℰip under which they are valid will be listed.

3.3.1 Multi-photon Ionization

Below Threshold

Multi-photon Ionization models the ionization process of an atom in the particle picture which
means that the incoming light is treated as a flux of incoming photons. The atomic shell has
several levels of energy for which the distance to one another decreases with the proximity to
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condition ionization regime
𝜔 > ℰip ≫ 𝑈p Single-photon
ℰip > 𝜔 ≫ 𝑈p Multi-photon
ℰip > 𝑈p > 𝜔 Above-Threshold
𝑈p > ℰip > 𝜔 Tunneling

𝐸 > 𝐸crit Barrier Suppression

Table 3.2: Different ionization effects and their regime of validity depending on laser pulse
properties. The characteristics denote the photon energy 𝜔, ionization potential ℰip, ponderomo-
tive potential 𝑈p and the critical field strength for barrier suppression 𝐸crit. The conditions are
expressed in atomic units.

the free continuum state by 1
𝑛2 , 𝑛 being the principal quantum number. All photons carry

a fixed energy ~𝜔 defined by the angular frequency of the laser wave. A particular electron
which resides on its energy level in the atomic shell needs a certain amount of energy ℰip to
leave the potential well. That means that a corresponding integral number 𝑛 of photons have
to arrive in a short period of time to drive the ionization process.

𝑛 =
⌊︂ℰip

~𝜔

⌋︂
+ 1 (3.11)

For the example of a 1µ𝑚 wavelength laser each photon carries an energy of 1.24 eV and thus
at least 11 photons are needed to overcome the ionization potential of 13.59 eV. The particular
succession of energy levels the electron passes is based on probability. Opposed to the naive
imagination that the photon has to provide the exact amount of energy needed for transition,
the Heisenberg uncertainty principle

Δ𝐸Δ𝑡 = ~
2 (3.12)

leads to a non-zero width of the emission- or absorption lines of an energy state. Conse-
quently the latter take the form of a Breit-Wigner- or Cauchy-Lorentz-distribution or, for
higher temperatures, a Gaussian distribution because of thermal Doppler-broadening. [8]

Lorentz − distribution :

schematic 𝑓(𝑥) = 1
𝜋

1
1 + 𝑥2 (3.13)

here 𝑓(𝜔; Γ, 𝜔0) = 1
𝜋

Γ
2

Γ2

4 + (𝜔 − 𝜔0)2
(3.14)

FWHM : Γ = ~
𝜏

(3.15)
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𝑉

𝑧

Figure 3.1: Schematic representation
of the resonant multi-photon ionization.
The potential shape is approximately un-
influenced by the external electric field
modeled by a photon flux. In order to
ionize the atoms a sufficient number of
consecutive absorptions have to occur to
compete with spontaneous emission. The
term ’Resonant’ means that an integer
number of photons together match the
energy of at least one absorption line of
the atom.

𝑉

𝑧

Figure 3.2: Schematic picture of non-
resonant multi-photon ionization. The
transition energies are not matched by
the energy the incoming photons deliver.
In consequence this process would result
in a lower ionization rate at the same in-
tensity than in the case of resonant MPI
as the probability of exciting the transi-
tion is low.

The 𝜏 in equation (3.15) denotes the mean life time of the excited state. It gives an upper
boundary for the time during which a certain number of photons must arrive to excite the
electron to the next level. This non-zero width of the probability density function 3.3 shown in
(3.14) makes an excitation possible even if the incoming photon delivers not exactly the energy
𝜔0 of the transition. The longer the life time of the excited state the narrower the transition

FWHM = Γ

𝑓 (𝜔, Γ, 𝜔0)

𝜔

𝜔0

Figure 3.3: Cauchy-Lorentz distribution as a probability density function for an atomic emission
line. Here, Γ denotes the natural linewidth and 𝜔0 the resonance frequency of the transition.
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and the more improbable it becomes for the electron to be excited into this state. Multi-photon
ionization can be separated into resonant and non-resonant MPI. The difference is that in the
resonant process at least one transition is enhanced because the photons match its resonance
frequency 𝜔0. This increases the overall ionization probability. Transitions between energy
levels include spontaneous and induced emission and absorption processes. In the thermal
equilibrium case the transition rates are described by Einstein coefficients. In the following
only the spontaneous emission coefficient 𝐴ji is considered where j indicates the higher and i
the lower energy state. The transition rates (here 𝑍21) for one example compute as follows:

𝑍
(spont)
21 = −

(︃
𝜕𝑛2

𝜕𝑡

)︃
(spont)

= 𝐴21𝑛2 = 1
𝜏spont

· 𝑛2 (3.16)

The minus sign on the right side indicates the decrease of the particle density 𝑛2 over time.
The Einstein coefficient 𝐴21 is the inverse of the life time for that state in regard to this special
transition. The sum

∑︁
i<j

𝐴ji = 1
𝜏(𝑠𝑝𝑜𝑛𝑡)

(3.17)

of all Einstein spontaneous emission coefficients yield the inverse of the total life time of the
state.
The multi-photon ionization process is complicated because it is not clear which path through
the energy states the electron will take but a first estimation can be applied to locate the region
of laser intensity needed. Under the assumption that the laser field strength is not altered by
the Coulomb field of the atom a hydrogen atom can be approximated by a two-state-system
yielding

𝐼min = 𝑛ph · 𝐸ph

𝜏spont · 𝜎
(𝑛ph)
ion

(3.18)

= 11 · 1.24 eV
1.9 · 10−7 s · 24 · 10−24cm2 · 1.602 · 10−19 J

eV

= 4.9 · 1011 W
cm2 .

This result is obtained assuming 1µm laser wavelength and only two levels with principal
quantum numbers 1 (ground state) and 6 (quasi-ionized). The Einstein coefficients have been
taken from [4] and summed up to evaluate the life time of that state. In equation (3.18) the
term 𝜎

(𝑛ph)
ion is the n-photon photo-ionization cross section taken from [21].

In the course of this thesis there have been no MPI models implemented to this point but it
is being mentioned here, that in lowest-order perturbation-theory (LOPT) [7] the n-photon
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ionization rate can be expressed in terms of:

Γ(n) = 𝜎(n)𝐼𝑛
L (3.19)

Here the rate and the cross section carry the index n denoting the number of photons, while the
laser intensity 𝐼 is taken to the power of 𝑛 as the probability of absorption for each photon is
proportional to 𝐼 [9]. The region of applicability for this formula is given for low field strengths
𝐸 compared to the Coulomb field of the atom and high photon energies usually above the
ultraviolet region of the electromagnetic spectrum (see fig. 3.8 for details). Furthermore the
problem of this approach is that the sum over all possible intermediate states between bound
state and continuum state is required because of the Golden Rule of Fermi which makes the
process complicated to compute. The estimate given in (3.18) describes a situation where an
atom would certainly be ionized. Therefore it marks the border to above threshold ionization
(ATI). If the intensity would grow above this estimate then each atom would get more than
the sufficient number of photons for ionization.

Above-Threshold

𝑉

𝑧

𝑛

𝑠

Figure 3.4: Schematic picture of the above-threshold ionization effect. At laser intensities
higher than sufficient for ionization the bound electron absorbs more than the amount of photons
𝑛 needed to leave the atom. The energy of the excess number 𝑠 absorbed photons is converted
into kinetic energy of the electron.

The main difference between the usual multi-photon ionization and above-threshold ionization
is that there is an excess number of photons for each electron that is ionized and the excess
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energy they deliver is converted into kinetic energy of the photo-electrons. This effect is
described by Agostini et al. [1].

𝐸kin = (𝑛 + 𝑠)~𝜔 (3.20)

Here 𝑛 is the number of photons needed for ionization and 𝑠 is the excess number delivered.

3.3.2 Field Ionization

In contrast to MPI, field ionization treats the influence of the laser on the atom as an external
electric field. This picture can mainly be applied for small photon energies 𝜔 compared to the
ionization potential ℰip but higher fields than in the MPI regime. It might be more intuitive to
start with a classical consideration of field ionization although this approach predicts ionization
at higher field strengths than a purely quantum mechanical approach.

Barrier Suppression

The classical part of field ionization is called Barrier Suppression Ionization (BSI). The atomic
Coulomb potential approximated by a negative 1/𝑟 potential where a single electron is located
in a bound state. The Hamiltonian 𝐻̂ of the electron, and the effective potential 𝑉eff in position
coordinates read:

𝐻̂ = 𝑝2

2 + 𝑉eff , 𝑉eff = −𝑍

𝑟
+ 𝐸𝑧 (3.21)

Compared to the atomic potential which depends on the atomic number 𝑍 the effective po-
tential 𝑉eff depends on the external electric field 𝐸 and the 𝑧-coordinate from the center of the
atom.
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𝑉
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ℰ

𝐸𝑧

Figure 3.5: Schematic representation of the barrier suppression effect. The atomic binding
potential is altered by an external electric potential 𝐸𝑧 resulting from the quasi-static laser field
strength 𝐸. The effective potential 𝑉eff barrier height 𝑉barr at the position 𝑧barr is below the
energy level ℰ of the electron. It can therefore leave the atom classically.

As shown in fig. 3.5 on the right side of the potential axis the atomic potential is modified
giving an upward slope while on the other side a barrier is formed, exhibiting a maximum
peak value 𝑉barr. If the effective potential is derived with respect to the coordinate that peak
value can be evaluated and the respective coordinate can be found. For the sake of simplicity
only the 𝑧-direction of the Coulomb potential will be considered.

𝜕

𝜕𝑧
(𝑉eff) = 𝜕

𝜕𝑧

(︃
− 𝑍

|𝑧|
+ 𝐸𝑧

)︃
(3.22)

= + 𝑍

𝑧2 + 𝐸
!= 0 (3.23)

𝑧barr = −
√︃

𝑍

𝐸
(3.24)

and thus 𝑉barr = −2
√

𝑍𝐸 (3.25)

In hydrogen-like atoms the energy states in AU are approximately given by:

ℰ𝑛 = − 𝑍2

2𝑛2 , especially for ground state : ℰ = −𝑍2

2
!= −2

√︁
𝑍𝐸crit (3.26)

Here, 𝐸crit denotes the critical field needed to suppress the barrier maximum to a level where
it equals the atomic binding- or ionization potential. For this critical field equation (3.26)
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yields:

𝐸crit = 𝑍3

16 (3.27)

This approximation can also be used to transform the critical field into an ‘appearance in-
tensity’. It gives a feeling for the order of intensity a laser pulse should have to suppress the
barrier

𝐼app =
ℰ4

ip

16𝑍2 . (3.28)

The approximation assumes that the Coulomb potential of the atom remains undisturbed by
the external electric field. For high intensity laser pulses the electric field strength is of the
order of the atomic Coulomb field strength or even higher and the Stark shift of the atomic en-
ergy levels has to be taken into account. Bauer and Mulser derive a new critical field strength
with regard to the Stark effect for hydrogen-like atoms and ions. [12]. They arrive at the result:

𝐸H−like
crit = (

√
2 − 1)ℰ3/2 (3.29)

This barrier suppression field strength will later on be compared to the critical field strength
without considering the Stark effect and will find its application in the Monte-Carlo simulations
conducted during this thesis. Due to the Stark effect the potential well is deepened and
ionization rates decrease because the ionization energy is increased.

Tunneling

The concept of barrier suppression ionization does not consider the quantum mechanical be-
havior of the electron. It is noticeable that in 𝑉eff no sharp bound states exist anymore. The
reason for this is that on one side of the effective potential there is a barrier of finite height.
This results in a non-zero probability for the electron to just tunnel through the barrier and
leave the atom. This picture however requires the external electric field to be quasi-static. This
is an important approximation which assumes two things. On the one hand for a sufficiently
short time the external field, even if oscillating, is regarded as unchanging. On the other hand
it is assumed to be spatially constant over atomic length scales. Keldysh proclaimed that the
tunneling process happens with no perceptible ’time lag’ [9], however as will later be shown
in eq. (3.37) a characteristic relates to a tunneling time.
This thesis concentrates primarily on the comparison of the most commonly used ionization
models and thus in the following section it is explained how each one of the models treats the
tunneling process in principle to arrive at an ionization rate.
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𝑉

𝑧

𝑉eff

𝑉barr

𝑧barr

ℰ

𝐸 · 𝑧

Figure 3.6: Schematic representation of the tunneling ionization effect. Requires the potential
𝑉eff to be quasi-static during the process. The characteristics denote: 𝑧barr position of the barrier
maximum, 𝑉barr the maximum barrier height and ℰ the ionization potential. The dashed line in
the path of the leaving electron marks the tunneling distance.

3.4 Ionization Models

3.4.1 Landau-Lifshitz

Derivation
The Landau-Lifshitz approach for tunneling is semi-classical. At first the Schrödinger Equation
is separated into parabolic coordinates (𝜉, 𝜂, 𝜑) by defining

𝜉 = 𝑟 + 𝑧 , 𝜂 = 𝑟 − 𝑧 (3.30)

and gaining an effective potential. When an external field is applied to a – here hydrogen-
atom – its degeneracy and symmetry is removed. The transformation in eq. (3.30) allows
the decoupling into two SEs where one is for the uphill potential 𝑉𝜉 and one for the downhill
potential 𝑉𝜂.

𝑉 (𝜂) = −1
2

(︃
1
2𝜂

+ 1
4𝜂2 + 1

4𝐸𝜂

)︃
(3.31)

Then the inner potential is approximated as a quadratic oscillator potential where the ground
state wave function has a non-zero width and is described by a Gaussian. Here it is assumed
that the shape of the bound state wave functions are not perturbed by the effective potential.
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𝑉

𝜂

ℰip

𝜂0 𝜂1

Figure 3.7: Schematic picture of the downhill potential 𝑉 (𝜂) depicting the matching point 𝜂0
for the tunneling wave function 𝜒left(𝜂) and the electronic continuum state 𝜒right(𝜂). The position
𝜂1 shows where the electron emerges from the barrier.

The ground state energy can then be calculated as the expectation value of the Hamiltonian
with the respective wave functions. The unperturbed solution of the downhill SE is multiplied
with a deformation factor which depends on the electric field and leads to the critical barrier
suppression field strength mentioned in eq. (3.29).
From this point on only the downhill potential 𝑉𝜂 is considered. Landau and Lifshitz find
a position inside the barrier 𝜂0 where the boundary conditions can be matched in a similar
fashion to the treatment of a one-sided finite potential well. Consequently a wave function for
the left and the right side are defined:

• 𝜒left(𝜂) - exponentially decreasing tunneling function

• 𝜒right(𝜂) - free particle wave function

Both wave functions are semi-classical, an approximation that holds as long as the de-Broglie
wavelength of the electron is small against the scale on which the potential changes. This
approximation breaks again at the point 𝜂1 where the electron emerges from the barrier because
there it has no momentum and

𝑝 = 0 ⇒ 𝜆de−Broglie = 2𝜋~
𝑝

→ ∞. (3.32)

Landau and Lifshitz state this approach to be valid if the disagreement of the wave functions
is negligible at the position 𝜂1. One arrives at

Γ = 4
𝐸

e−2/(3𝐸). (3.33)
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This is the tunneling rate for atomic hydrogen which can be easily extended to hydrogen-like
ions with 𝑍-dependency of the ground state ionization potential ℰ0 = −𝑍2/2:

ΓLL = 4(2|ℰ0|)5/2

𝐸
exp

(︃
−2(2|ℰ0|)3/2

3𝐸

)︃
. (3.34)

The integration and the assumption of a quasi-static potential set a lower limit to the time in
which the model can be assumed to be reasonable. This model and all of the following average
over the electron orbital motion.

Region of validity

• exact for low field strengths 𝐸

• overestimates ionization in over-barrier regime

• initially intended for hydrogen-like atoms and ions

Most important approximations

• wave function retains ground state shape with respect to uphill coordinate 𝜉 → neglecting
Stark shift

• de -Broglie wavelength of e− small against potential-varying scale

• neglect disagreement between 𝜒left and 𝜒right at point where electron emerges from barrier

3.4.2 Keldysh theory

Derivation Keldysh in his publication [9] aimed to show that the nature of multi- photon
ionization and tunneling ionization is essentially the same. He introduces a tunneling frequency
𝜔t, with

𝜔t = 𝑒𝐸/
√︁

2𝑚eℰ0 (3.35)

and states that for low frequencies 𝜔 ≪ 𝜔t and strong fields tunneling ionization happens while
for high frequencies 𝜔 ≫ 𝜔t and low fields multi-photon ionization prevails. This definition is
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today widely known as the Keldysh parameter 𝛾

𝛾 = 𝜔

𝜔t

⎧⎪⎨⎪⎩≪ 1 → tunneling ionization

≫ 1 → Multi-photon ionization
, 𝛾 = 𝜔𝑇tunnel (3.36)

𝑇tunnel ≃
𝑧exit∫︁
0

d𝑧

|𝑝(𝑧)| =
𝜅2/2𝐸∫︁

0

d𝑧√
𝜅2 − 2𝐸𝑧

= 𝜅

𝐸
(3.37)

which separates the two ionization regimes from each other. The term 𝑇tunnel can be interpreted

LOPT

𝛾 =
𝜔
√︁

2ℰip

𝐸
= 1

Over-The-Barrier

Tunneling

𝐸√︁
2ℰip

𝐸BSI =
ℰ2

ip

4𝑍

~𝜔

ℰip

number of photons
8 4 2 1

10.50.250.1250

∞
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Figure 3.8: Schematic map of regions of different ionization effects in the Keldysh theory.
The Keldysh parameter 𝛾 determines the boundary between field and multi-photon ionization,
respectively. In the multi-photon regime the curve represents lowest order perturbation theory
(LOPT) for comparison. In the quasi-static regime the barrier suppression field strength 𝐸BSI
separates the tunneling ionization from the over-the-barrier or barrier-suppression region.

as a "tunneling time". Eq. (3.37) yields at this result when the time to tunnel through a
static Coulomb barrier is calculated in semi-classical WKB theory [16]. The parameter 𝜅 is
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introduced as a characteristic momentum

𝜅 =
√︁

2ℰ0 so that 𝛾 = 𝜔𝜅

𝐸
=
√︃

ℰip

2𝑈p
(3.38)

and the ponderomotive potential 𝑈p describes the mean energy stored in the quiver motion of
a free electron in an external alternating electric field.

𝑈p = 𝐸2

4𝜔2 (3.39)

In his paper, Keldysh derives an ionization probability directly without considering the ioniza-
tion rate. He starts with the wave functions for a free electron in an electric field and the wave
function for a bound state. The probability for a transition from the latter to the former state
is calculated perturbatively only with the additional assumption that the final state takes the
acceleration of the free electron into account. The free electron wave function is a Volkov [20]
state which considers the interaction with the external laser field whereas the influence of the
Coulomb potential of the ion is neglected. The ionization probability is mainly influenced by
low-momentum electronic states and thus is expanded in powers of the momentum 𝑝. In the
case of low photon energies 𝜔 and large ponderomotive potentials 𝑈p both compared to the
ionization potential ℰip the ionization probability limits in:

𝑤0 =
√

6𝜋

4
ℰ0

~

(︃
e𝐸~

𝑚
1/2
0 ℰ3/2

0

)︃1/2

exp
⎧⎨⎩−4

√
2𝑚eℰ3/2

0
3e~𝐸

(︃
1 − 𝑚e𝜔

2ℰ0

5e2𝐸2

)︃⎫⎬⎭ . (3.40)

In the limit of 𝜔 → 0 the second term in the exponential function vanishes. If now this
probability is transformed to atomic units and divided by a unit time the same expression for
the tunneling rate as in [3] is found.

ΓK = (6𝜋)1/2

25/4 ℰ0

(︃
𝐸

(2ℰ0)3/2

)︃1/2

exp
(︃

−2(2ℰ0)3/2

3𝐸

)︃
. (3.41)

A good review on the further development of the Keldysh theory has been published by
Popov [14], discussing the limits of this approach.

Region of validity In the basic Keldysh theory the tunneling regime is only limited by the
Keldysh parameter. Small photon energies 𝜔 compared to ℰip and relatively large fields below
the barrier suppression field strengths yield

𝛾 = 𝜔
√

2ℰ0

𝐸
≪ 1 ⇒ 𝐸 ≫ 0.0456

√︁
2ℰ0 (3.42)
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and in SI units for hydrogen (ℰ0 = 0.5)

𝐸 ≫ 2.34 · 1010 V
m 𝐸BSI = 5.1422 · 1011 V

m (3.43)

For an infrared laser of a wavelength of 1µm the electric field strengths to which the model
can be applied range between 2.3 · 1010 and 5.1 · 1011 V

m .

Most important approximations

• 𝑝(𝜂1) = 0, only low-momentum electronic states contribute

• ℰip = ℰ (′) + 𝐸2

4𝜔2 , Stark effect for binding potential

• neglect influence of Coulomb potential of parent ion on final state

3.4.3 Ammosov, Delone, Krainov (ADK)

Discussion of the ionization rate On the basis of the work of Landau, Lifshitz and Keldysh
multiple modifications to the obtained ionization rates have been made. Ammosov, Delone
and Krainov published an ionization rate for complex atoms and atomic ions in 1986 [2].

Γ = 𝐶2
𝑛*𝑙𝑓(𝑙, 𝑚)ℰ0

(︃
3𝐸

𝜋(2ℰ0)3/2

)︃1/2 (︂ 2
𝐸

(2ℰ0)3/2
)︂2𝑛*−|𝑚|−1

exp
(︃

−2(2ℰ0)3/2

3𝐸

)︃
(3.44)

with

𝐶𝑛*𝑙 =
(︂2e

𝑛*

)︂𝑛*

(2𝜋𝑛*)−1/2, (3.45)

𝑓(𝑙, 𝑚) = (2𝑙 + 1)(𝑙 + |𝑚|)!
2|𝑚||𝑚|!(𝑙 − |𝑚|)! . (3.46)

This formula introduces the effective principal quantum number 𝑛*, the angular quantum
number 𝑙 and the magnetic quantum number 𝑚 to the calculation. The e is the Euler-constant.
The effective principal quantum number is given by

𝑛* = 𝑍√
2ℰ0

(3.47)

and accounts for the quantum defect in Rydberg-atoms by taking into account that the inner
electrons do not entirely screen the charge of core. In review [5] it is discussed that the contri-
bution by magnetic quantum numbers except 𝑚 = 0 is very small and after using the Stirling
formula of factorials one arrives at
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ΓADK =
√︃

3𝑛*3𝐸

𝜋𝑍3⏟  ⏞  
lin. pol.

𝐸𝐷2

8𝜋𝑍
exp

(︃
− 2𝑍3

3𝑛*3𝐸

)︃
, with 𝐷 =

(︃
4e𝑍3

𝐸𝑛*4

)︃𝑛*

. (3.48)

The first factor in (3.48) comes from the averaging over one laser cycle and only is valid or
linearly polarized light. The shape of this equation was simplified by introducing the parameter
𝐷 which is often used in expressions for ionization rates and energy. The exponential term
might not look familiar in this form but if 𝑛* is resubstituted it reads

exp
(︃

− 2𝑍3

3𝑛*3𝐸

)︃
= exp

(︃
−2

3
𝑍3

𝑍3
(2ℰ0)3/2

𝐸

)︃
= exp

(︃
−2

3
(2ℰ0)3/2

𝐸

)︃
, (3.49)

which is also to be found in eqs. (3.34) and (3.41). Physically it describes the probability
density for the free electron outside the barrier which seems plausible as it converges against
1 for very high electric fields. There are yet multiple approximations to be considered here of
which some are also discussed in the review [15]. Eq. (3.48) is in general valid for low fields
in comparison to the barrier suppression field strength 𝐸 ≪ ℰ2

𝑖𝑝/4𝑍 and the application of the
Stirling formula is feasible for 𝑛* ≫ 1. However Delone and Krainov state that this issue poses
no problem for numerical reasons.
Krainov continued the work on the ionization rate to extend its applicability into the region of
barrier-suppression field strengths. In many previous approaches the free electron final state
was assumed as a Volkov wave function which neglects the influence of the parent ion. In his
paper [10] Krainov uses the Keldysh, Faisal, Reiss (KFR) approach which uses the S-matrix
theory [17] along with a Coulomb-correction on the final Volkov state of the ejected electron.
The correction factor is an exponential function with an argument that takes the same shape
as the tunneling time in eq. (3.37) times Coulomb potential. It is also taken into account
that the number of photons needed for ionization increases because of the Stark shift. Krainov
emphasized that the pre-exponential factors enhance the ionization probability strongly. He
takes the momentum distributions of the ejected electrons and integrates over them to arrive
at the energy distribution for the electrons. Finally, integrating over the angles and energies
he arrives at the formula for the ionization rate of atoms in the barrier-suppression regime in
linearly polarized light.

ΓBSIe = 4
√

3
𝜋𝑛*

𝐸

(2𝐸)1/3

⎛⎝4eℰ3/2
0

𝐸𝑛*

⎞⎠2𝑛* ∞∫︁
0

Ai2
(︃

𝑥2 + 2ℰ0

(2𝐸)3/2

)︃
𝑥2d𝑥 (3.50)

In order to compute the probability density term an integral over the square of an Airy func-
tion has to be performed. This ansatz is plausible because Airy functions are the solution to
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the linear differential equation

𝜕2

𝜕𝑥2 𝑦 − 𝑥𝑦 = 0. (3.51)

The Schrödinger equation for 1D potential wells is of the same structure and these solutions
exhibit a classical turning point, which was in the derivation assumed to be inside the barrier.
There, the wave function changes from an oscillatory character to an exponentially decreasing
slope.
This can be seen in the asymptotic behavior of the Airy function in cases of Ai(𝑢 → ∞)

(𝑢 → ∞) : Ai(𝑢) ∼ e− 2
3 𝑢3/2

2
√

𝜋𝑢1/4 (3.52)

resubst.= 1
2
√

𝜋

(︃
𝑥2 + 2ℰ0

(2𝐸)3/2

)︃−1/4

exp
⎧⎨⎩−2

3

(︃
𝑥2 + 2ℰ0

(2𝐸)3/2

)︃3/2
⎫⎬⎭ (3.53)

≃ exp
(︃

−2
3

(2ℰ0)3/2

2𝐸

)︃
(3.54)

If one now considers that the Airy function in the integrand is squared, the 2 in the denominator
of the exponential term vanishes and it now equals the exponential term in (3.48). Note that
this happens in the limit of lower field strengths where the term with 𝐸 in the denominator
of the Airy argument contributes strongly for small 𝑥 than it would for higher fields. Higher
values of 𝑥 contribute only weakly, since the asymptotic behavior of the Airy function for large
arguments has an exponential decrease which is more dominant than any growing power of 𝑥.

Region of validity The formula in (3.50) is intended to be applicable for both the tunneling
regime 𝐸 ≪ 𝐸BSI and the barrier suppression regime 𝐸 ∼ 𝐸BSI as it can be reduced to (3.48)
in the limit of smaller fields.

Most important approximations

• magnetic numbers 𝑚 ̸= 0 do not contribute

• averaged over 1 laser cycle for the linearly polarization pre-factor

• consider Coulomb correction for continuum states and Stark shift for bound states in
KFR approximation [7]

• uses Stirling formula for factorials 𝑛! ≃
√

2𝜋𝑛
(︁

𝑛
e

)︁𝑛
even for small 𝑛
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3.5 Overview
In order to conclude this section the most important approximations and the regions of validity
are summed up in the following two tables 3.3 and 3.4.

Model Approximations
Landau-Lifshitz - neglects Stark shift

- e− de-Broglie WL: 2𝜋~
𝑝

= Δ𝑧 ⇒ 𝜕𝑉

𝜕𝑧
Δ𝑧 ≃ 0

- ignore that this breaks at position 𝜂0 where e− emerges from barrier
- neglect disagreement between left- and right side wave functions at position 𝜂1

Keldysh - influence of laser field is only small perturbation
- neglect Coulomb interaction of parent ion on free e−-state
- bound states unperturbed

BSIe ADK - averaged over 1 laser cycle (lin. pol.)
- consider Stark shift and Coulomb correction approximately

Table 3.3: Summary of the approximations of the models

Model 𝜔 field strength 𝐸 [AU] intensity 𝐼 [W/cm2]

LL 𝜔 ≪ ℰip 𝐸 < 𝐸crit = 𝑍3/16 𝐼 < 2.19 · 1015

K 𝐸√︁
2ℰip

≪ 𝜔 0.0456
√︁

2ℰip ≪ 𝐸 ≪ 𝐸crit 1.6 · 1015 ≪ 𝐼 < 1.5 · 1016

BSIe 𝐸√︁
2ℰip

≪ 𝜔 0.0456
√︁

2ℰip ≪ 𝐸 1.6 · 1015 ≪ 𝐼

Table 3.4: Summary of the regions of validity of the models. The column for 𝐸 assumes a
photon energy 𝜔 of 1µm laser light whereas the column for 𝐼 shows the value for hydrogen as
an example in SI units. The characteristics denote 𝐸crit - barrier suppression field strength and
ℰip - the ionization potential

Tab. 3.4 shows the general regions where the original papers assumed the models to be valid.

3.5.1 Parameters, Rates and Probability

In the following an overview about the input parameters, the ionization rates and the calcu-
lation of the ionization probability in this thesis is given.
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Input Parameters

𝑍 atomic number

ℰip ionization potential

𝐸 electric field

Δ𝑡 time step

Model Ionization rate

Landau and
Lifshitz

ΓLL = 4(2|ℰ0|)5/2

𝐸
exp

(︃
−2(2|ℰ0|)3/2

3𝐸

)︃

Keldysh ΓK = (6𝜋)1/2

25/4 ℰ0

(︃
𝐸

(2ℰ0)3/2

)︃1/2

exp
(︃

−2(2ℰ0)3/2

3𝐸

)︃

BSI-extended
ADK model by
Krainov

ΓBSIe = 4
√

6
𝜋𝑍

√︁
ℰip𝐸

(2𝐸)1/3

(︃
4
√

2eℰ2
0

𝐸𝑍

)︃ 2𝑍√
2ℰip

∞∫︁
0

Ai2
(︃

𝑥2 + 2ℰ0

(2𝐸)3/2

)︃
𝑥2d𝑥

Probability calculation

ionization
probability

𝑃ion = 1 − e−ΓΔ𝑡

Table 3.5: Overview about the input parameters, ionization rates and the probability calculation
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This chapter focuses on the methods employed in analyzing the ionization models introduced
in chapter 3 according to their dependencies on laser parameters and atom parameters.

Laser Atomic Results
photon energy 𝜔 atomic number 𝑍 ionization rates Γ
field strength 𝐸 ionization potential ℰip ion. probabilities 𝑃
pulse duration 𝑇pulse (quantum numbers 𝑛, 𝑙, 𝑚) charge states 𝑄
initial phase 𝜙
pulse shape

Table 4.1: Main characteristics which can be varied in the examination of the different models

4.1 Guideline of approach
To compare the models, different combinations of the characteristics in table 4.1 have to be
tested. However, for the sake of simplicity in every simulation a major number of them were
kept constant.
In the following a sequence of the analyses performed in this thesis and their particular focus
is shown.

Field strength dependency At first the dependency of ionization rates on static field strengths
is analyzed neglecting any time-dependence of the field. The tunneling regime will be marked
based on the condition 𝜔 ≪ ℰip in the case of atomic hydrogen.

Atomic number dependency Next the dependency of the ionization rate on the atomic
number 𝑍 for hydrogen-like atoms is examined, assuming ionization from the ground state.
Initially the models are compared in an analytic fashion, then numerical methods are used.

Extension to higher field strengths For the continuation of the models to higher field
strengths a BSI condition has been chosen. The influence of the Stark shift to the barrier
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suppression field strenghts is examined for the ground states of hydrogen-like ions. Afterwards
the barrier suppression field strengths for Argon charge states are shown in comparison to the
tunneling regime boundaries.

Ionization probabilities Different time steps are taken for the calculation of ionization prob-
abilities from the ionization rates. They are set in context to the approximations from the
model derivations. As exemplary cases a hydrogen ground state and an 𝐴𝑟4+ state are exam-
ined.
In addition the probability of double ionization will be examined in an extreme case of large
electric field gradients as the following simulations only allow one ionization per time step.

Pulse dependencies The following analyses implement laser pulses of varying duration and
compare the time when ionization occurs in an envelope-only case. Then the effect of an
oscillating field is examined, where different wave numbers are tested for their influence on
ionization dynamics. Furthermore different initial phases are employed in a short laser pulse
scenario. The dependencies on wave number and initial phase are further analyzed in the
course of 1D Monte-Carlo simulations.

4.1.1 Spatial distribution

The results of a Monte-Carlo simulation are shown for three distinct regions of interest in
the interaction of a Gaussian-shaped pulse with a two dimensional target area. The pulse is
spatially distributed and grows linearly in time during the simulation. The resulting charge
state distributions are then compared to an estimate where, according to the final pulse shape,
only the BSI condition is applied to the target atoms.
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4.2 Technical implementation

Parameters Calculating ionization rates and probabilities

Simulation properties
Laser Target
- 𝑇pulse

- 𝐸min, 𝐸max

- Δ𝑡

- 𝑁

- 𝑍

Read ℰip(𝑍) from file𝐸-distribution

choose shape

Oscillating
Yes No Calculate 𝐸crit

Model- Landau-Lifshitz
- Keldysh
- BSIe ADK

Lookup Tables

Γ(𝐸(𝑡, 𝑥)) 𝑃 (Γ, Δ𝑡)

Monte Carlo Simulation

𝑡 ≤ 𝑇pulse
Yes No

𝑡 = 𝑡 + Δ𝑡n ≤ 𝑁
Yes No

n = n + 1

𝐶 < 𝑍

𝐸(𝑡) < 𝐸crit

No

Yes

Yes

No

𝐶 = 𝐶 + 1

𝑅 < 𝑃

No

Yes𝑅 - random number

𝐸crit - barrier supp.
field strength

𝐶 - charge state

n - particle index

𝑇pulse - pulse duration
𝐸min - minimum field strength
𝐸max - maximum field strength
Δ𝑡 - time step
𝑁 - total number of particles
𝑍 - atomic number

Γ - ionization rate
𝑃 - ion. probability

ℰip - ion. potential

Visualization

Visualization

Models

𝑡 - current time

Spatio -
Temporal
Charge State
Distribution

Figure 4.1: Flowchart showing the operating principles of the implementation of the ionization
models into the simulations performed in this thesis.
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5.1 Ionization rate field strength dependency
This section focuses on a comparison of the time-independent ionization rates at different field
strengths.

Figure 5.1: Time independent comparison of different ionization models for the hydrogen atom.
The lower x-axis shows the laser field strength in units of the barrier suppression field strength
of hydrogen which is equal to one atomic unit of field strength. Black crosses mark unphysical
behavior and dashed lines propose a better continuation. The shaded area marks 𝛾 ≪ 1 for
wavelength 𝜆 = 1µm

In figure 5.1 a comparison of the ionization rates for the three different field ionization models
can be seen. On the lower and upper x-axis the laser field strength in atomic units and the
corresponding laser intensity are depicted. In general higher values result in higher ionization
rates to which the y-axis is assigned. It can be seen that the three models differ greatly as to
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when the ionization rate will rise above 109 s−1. This unit was chosen because high intensity
laser pulses are generally shorter than 1 nanosecond. While the Landau-Lifshitz model starts
at low field strengths of around 10−2 atomic units, the Keldysh model still predicts no consid-
erable ionization rate until 4.5 · 10−2 AU. Last is the BSI-extended ADK model by Krainov
which starts ionizing at field strengths greater than 10−1 AU. Save the Keldysh model, the
other two exhibit roughly the same behavior through orders of magnitude of laser intensity i.e.
an initially steep slope followed by a rapid reduction of steepness at certain higher intensities.
The Keldysh model ionization rate though grows not as fast as the other two and also lacks
the sudden decrease in steepness seen for the other two models at field strengths close to 1 𝐴𝑈

The black crosses indicate where the ionization rates fall again while the field is still growing.
This behavior is regarded unphysical as will be explained later. Therefore a usable contin-
uation has been proposed which is marked by dashed lines carrying the color of the model,
respectively. It assumes that the ionization rates become independent from the electric field.
The cyan-colored area is the region where the Keldysh parameter 𝛾 predicts the tunneling
regime for a laser of 1 micron wavelength.

Interpretation The steep slope all the models exhibit initially could result from the exponen-
tial dependence of the tunneling probability from the barrier height. For the Landau-Lifshitz
and BSIe ADK model one notices that the curve for the ionization rates, including their
nonphysical part, follow roughly the shape of the potential barrier in fig. 3.6. A possible
interpretation for the unphysical behavior of the tunneling rates could be that with growing
field strength the potential barrier is suppressed. With the suppression of the barrier, the
tunneling distance diminishes. If the maximum and so the barrier suppression field strength is
reached, the tunneling distance becomes zero. With further increase in the electric field there
is no distance to tunnel through and the formula yields no reasonable results anymore. Conse-
quently the rates become independent from the electric field 𝐸. It seems therefore reasonable
to assume a constant rate for higher fields. The early increase of the Landau-Lifshitz rate and
its unphysical behavior before the field reaches 1 𝐴𝑈 can be explained with the neglect of the
Stark shift. It underestimates the depth of the potential well of the atom. The BSIe ADK
model in considering the Stark effect predicts the barrier suppression correctly at a field of
1 𝐴𝑈 . In contrast to the other models Keldysh calculated the transition matrix elements from
a bound state into a scattering state in the continuum. The model does not depend on the
tunneling distance and consequently it shows no decrease of the ionization rate for growing
field strengths.
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5.2 Ionization rate Z-dependency
With the behavior of the models for different field-strengths pointed out, the dependency
on different atomic numbers 𝑍 will be shown. An analytic treatment of the ionization rate
formulae is followed by a numerical examination for the implicit field strength 𝑍-dependency
at a constant rate.

5.2.1 Analytic treatment

The previously introduced three ionization rate formulae (3.34), (3.41) and (3.48) can be sim-
plified to examine the dependence on the atomic number 𝑍 by assuming hydrogen-like ground
state ions. The latter of the three is not the BSI-extended version but the ADK rate for tun-
neling since it is of an easier form. Is also valid in the same regime as the other two models.
All 𝑛* and 𝐷 are replaced by their original representatives and the the ionization potential
reads ℰ0,H−like = 𝑍2/2. Then one arrives at:
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In the case of small numbers 𝑍 the exponential term all of the rates have in common, can be
expanded to

lim
𝑍→0

exp − 𝑍5

3𝐸
= 1 − 𝑍5

3𝐸
+ 𝒪(𝑍7). (5.4)

The rates are then determined by their pre-exponential factors and differences between them
arise. The Keldysh model assumed a 1/𝑟-shaped Coulomb potential and therefore the depen-
dence on 𝑍 is close to unity. The Landau-Lifshitz model and the BSI- extended ADK model
however consider the ground state of the atom. There, the electron is under the influence of
a 𝑍/𝑟-potential. The BSIe ADK model has an additional dependence on 𝑍 and 𝐸 because it
considers the Stark shift. If the field strength is smaller than 0.1 AU however the exponential
term dominates and the differences between the models decrease as it converges against 0. The
same behavior can be seen for field strengths up to 1 𝐴𝑈 and large values of 𝑍. For electric
fields multiple orders of magnitude larger than 1 AU and small 𝑍 the Landau-Lifshitz model
and the BSIe ADK model become unphysical as was seen before. In the case where both 𝑍

and 𝐸 are large, the Coulomb fields of the atoms are strong and as such will not be suppressed
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as easily by high laser field strengths. In this regime the differences are expected to be the
largest due to the simple extension of the Landau-Lifshitz model and the Keldysh model to
higher core charge numbers 𝑍 by inserting the measured ionization potentials. The BSIe ADK
model considers the 𝑍-dependency with the introduction of the effective principal quantum
number 𝑛*.
The Landau-Lifshitz rate decreases the least with growing 𝑍, followed by the ADK rate and
last the Keldysh rate. Yet it also has to be taken into account that while in the latter two
the pre-factor increases with growing field strength 𝐸, one by the power of 3/2 and one with
1/2, the Landau-Lifshitz pre-factor actually drops with rising field strength by the power of
−1. The BSI-extended ADK formula, however, also exhibits such a decline-dependency in its
pre-integral factors.

5.2.2 Numerical results

To account for typical targets in PIC codes and for experiments with target normal sheath
acceleration (TNSA) [13] a set of atoms from different physically relevant material categories
has been chosen. On every target surface there exists a thin layer of carbohydrates. Thus,
we consider hydrogen, carbon and oxygen for the following analyses. From the category of
gas targets the noble gas argon has been picked. Last, as representatives of condensed matter
targets the lightweight element titanium and the heavier, higher Z element, gold have been
added to the list. The latter is a good example since it is rarely found in an oxidized form.

𝑍 Symbol Name ℰ0[ eV] ℰ0[ AU] | − 𝑍2/2|

1 H hydrogen 13.59 0.50 0.50
6 C carbon 489.99 18.00 18.00
8 O oxygen 871.41 32.03 32.00

18 Ar argon 4426.23 162.67 162.00
22 Ti titanium 6625.82 243.51 242.00
79 Au gold 93254.30 3427.21 3120.50

Table 5.1: Set of atoms representing often used high-power laser experiment targets. The
ionization potential for their first s-state electron is given in SI and atomic units, followed by the
theoretical approximation.
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Figure 5.2: In the left plot the electrical field strengths to achieve an ionization rate of at
least 1/ns are depicted depending on the atomic number 𝑍. The two black dotted lines mark the
barrier suppression field strengths considering (upper) and not considering the Stark shift (lower).
The right plot shows the Stark shift for barrier-suppression field strengths 𝐸crit of hydrogen- like
states of a set of elements, containing H,C,O,Ar,Ti,Au (see tab. 5.1). The colored dotted lines
for the models have been fitted by a power regression.

For these elements the ionization process stripping them off their last electron and thus re-
sulting in a "Z+"-charge state has been examined in figure 5.2 under the aspect of achieving
a certain minimum ionization rate. This threshold value has been chosen to be 109 s−1. For
high-power laser pulses shorter than 1 nanosecond lower rates would be of no perceivable ef-
fect in simulations. The right plot shows the Stark effect on barrier suppression field strengths
𝐸crit. It is noteworthy that by shifting up 𝐸crit it is nearly doubled. The left plot shows the
value of 𝐸 necessary to obtain the minimum ionization rate threshold. When comparing the
different models it becomes obvious that only the Keldysh model follows the 𝑍3-dependence
from eq. (3.27). The Landau-Lifshitz model is depending on the atomic number to a higher
degree and the BSI-extended ADK model yields a much lower 𝑍-dependence as was explained
before in the analytical treatment. In figure 5.2 the dependencies have been fitted according
to a power regression. The three models yield

Landau-Lifshitz : 𝐸 = 0.0137𝑍6.1032

Keldysh : 𝐸 = 0.0435𝑍2.9194

BSIe ADK : 𝐸 = 0.1694𝑍1.2611

For lower 𝑍 atoms until around 𝑍 = 3 the roles of the three models are reversed. In the
previous section it was shown in fig. 5.1 that in the Landau-Lifshitz model ionization of the
hydrogen atoms was seen at much lower field strengths compared to the BSI-extended ADK
model. For heavier atoms this behavior is exactly reversed as the power of 𝑍 dominates the
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pre-factor.
It is noteworthy that increasing the threshold ionization rate by several orders of magnitude in
the Keldysh and BSI-extended ADK model has no noticeable effect. Whereas in the Landau-
Lifshitz model the field needed to reach that value increases, especially for higher-𝑍-elements.

𝑉

𝑧

ℰip

𝐸𝑧

𝑍/𝑧

1/𝑧

Figure 5.3: Schematic representation of an atomic potential well. The red lines depict a 1/𝑧
potential under the influence of an external electric field as it is assumed in the Keldysh model.
The green lines depict the field-affected 𝑍/𝑧 potential used in the derivation of the Landau-
Lifshitz and the BSIe ADK model. Here, 𝑍 > 1 is assumed.

In figure 5.3 it becomes obvious that the Keldysh model overestimates the height of the barrier
by assuming an 1/𝑧 potential while the other two approximate the ground state with higher
accuracy.

Interpretation It was predicted by Landau and Lifshitz that for 𝐸crit-near field strengths the
ionization model would overestimate the ionization rates. This seems to be true for hydrogen
only. It has become clear now that if an extension to other atoms by just implementing their
respective ionization energies is done, the exact opposite happens for higher atomic numbers 𝑍.
The ionization rates are underestimated to an extent that they do not provide any contribution
whatsoever to the ionization process if a barrier suppression condition would be introduced.
This is still the case if that critical field considers the Stark shift of ionization energies. Thus,
the Landau- Lifshitz model does not seem to be a reasonable choice for modeling laser-matter
interaction with atomic species any other than hydrogen. The Keldysh model and the BSI-
extended ADK model yield no problems in that regard. The difference between these models
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however is already strong for atoms of a larger core charge than carbon. As the models
were tested here only under static-field circumstances in a time- dependent simulation these
differences could lead to essentially different outcomes. Furthermore it can already be predicted
that, depending on the model, currently available peak laser intensities of 1021 W/cm2 might
not manage to fully ionize atoms heavier than Argon.

5.2.3 Barrier Suppression field strengths

In later parts of this chapter Monte-Carlo simulations will be analyzed. It has become obvi-
ous in the analysis of the field strength dependency that a treatment of barrier suppression
ionization is necessary. In comparison to the former figure 5.2 now the corresponding barrier
suppression field strengths for the example of Argon atoms are shown in 5.4. Here the critical
field strengths

𝐸crit =
ℰ2

ip

4𝑍
(5.5)

𝐸crit,Stark = (
√

2 − 1)ℰ3/2 (5.6)

from eq. (3.29) have been calculated for all charge states. They are compared assuming the
Stark-shifted critical field strengths mark the upper limit of the tunneling regime.
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Figure 5.4: Barrier Suppression field strengths for each ion multiplicity with and without the
Stark shift. The shaded area marks the tunneling regime defined by the Keldysh parameter. A
laser wavelength of 1µm has been assumed to calculate its lower boundary for each charge state.
Below the border the multi-photon regime is located.

The tunneling regime which is marked in fig. 5.4 was derived as follows

𝜆 = 1µm ⇒ 𝜔 = 0.0456 AU (5.7)

𝛾 ≪ 1 ⇒ 𝐸 ≫ 𝜔
√︁

2ℰip = 0.0456
√︁

2ℰip (5.8)

Here, ℰip accounts for the ionization potential of each Argon charge state, thus yielding its
own lower boundary for the tunneling regime. The shaded region starts where the threshold
from the upper equation is located, since the condition to the Keldysh parameter 𝛾 ≪ 1 is
often interpreted as 𝛾 < 1. The figure shows that for growing ion multiplicity also the region
for tunneling grows. If the Stark shift is not being considered, however, the first charge states
lie outside the tunneling regime. Another eye-catching feature are the jumps of 𝐸crit for the
transitions from 8+ to 9+ and from 16+ to 17+. Those are no effect of the model but simply of
the ionization energies of the Argon atom. When the first 8 electrons are removed, the noble
gas Argon arrives at the noble gas configuration of Neon which is more stable. The same
accounts for the jump between 16 and 17 where the completely filled s-state of the Helium
configuration shows its stability.
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Interpretation The barrier suppression field strengths in this thesis depend purely on the
ionization potential. Therefore they depend on the atomic number 𝑍 only implicitly. For
higher 𝑍 the first ionization energy of the outermost electron is still similar to hydrogen in
orders of magnitude. The reason is that all inner electrons shield the core charge to some
extent. As the ionization potential grows with the number of unpopulated energy levels,
so does the tunneling regime with regard to the range in intensity. The calculation of the
Stark-shifted barrier suppression field strengths 𝐸crit,Stark however was initially derived for
hydrogen-like ions. Thus, a possible explanation is that the formula was applied to Argon
atoms. In the application of the models for PIC codes multiple orders of magnitude of the
electric field strengths are passed and different species are ionized. With such small borders it
proves hard not to violate the borders of validity. If the gradients of the electric field strengths
cannot be sampled to sufficient detail anymore a BSI condition has to be employed to prevent
some of the models from yielding unphysical results.

5.3 Time step influence on probabilities

Figure 5.5: Influence of the chosen time step for computing ionization probability in several
models. Different Δ𝑡 result in different local field strengths / laser intensities needed to reach 90%
ionization probability. The dotted black continuation of the graphs are the unphysical regions.

To emphasize the influence of the time step which in PIC simulations is generally chosen with
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respect to the electron density of the material, figure 5.5 now assumes that all models are
supposed to reach 90% of ionization probability. The probability is computed as discussed in
eq. (3.10) in chapter 3.

𝑃 = 1 − exp(−Γ(𝐸)Δ𝑡) (5.9)

Different time steps are used and the electric field strengths (in AU) required to reach 90%
ionization probability are plotted accordingly. On the right side y-axis the corresponding laser
intensity in W/cm2 is shown. The lower x-axis shows the time step in units of one classical
orbital period of the electron in hydrogen and the upper x-scale shows the time step in units
of the laser period for 𝜆 = 1µm, respectively.
Time steps left of the vertical black line represent time scales where the electron motion and
its position have to be taken into account. The figure shows that in this region the models
differ greatly. Given the time step is small enough the Keldysh model requires laser intensities
outside the bounds of current capabilities. It is however the only model not in need of a
continuation to higher field strengths. The Landau-Lifshitz model and the BSIe ADK model
reach above 90% ionization probability in times comparable to one laser period well below the
relativistic intensity of 𝐼 = 1.38 · 1018 W/cm2 for 𝜆 = 1µm. The dashed horizontal line in fig.
5.5 marks the barrier suppression field strength calculated with eq. (3.29). In a simulation
where a BSI condition at this field strength of about 0.147 AU would be applied, the BSIe
ADK model could not ionize the hydrogen atom before the BSI condition would take effect.
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Figure 5.6: Again the influence of the time step but now on the process of ionizing Ar 4+. The
dashed horizontal line displays the barrier suppression field strength of Ar 4+ in AU, calculated
with eq. (3.29). The dotted black continuations show the unphysical regions.

As expected, for Argon ions in fig. 5.6 the role of the models is reversed. Here, it is possible
to choose a time step of a few attoseconds in every model. As can be clearly seen, the laser
intensities needed to ionize Ar 4+ differ by multiple orders or magnitude in this regime. In this
example the Keldysh model is prevented from taking effect for time steps smaller than 1 laser
period if a barrier suppression condition (the dashed horizontal line) is taken into account.
The Landau- Lifshitz model fails to ionize the 𝐴𝑟4+ ions on time scales relevant in simulations
employing the BSI condition.

Interpretation For a reasonable compromise of using the models for simulations with very
short time steps there has to be a continuation of the models to larger field strengths. Choosing
a time step smaller than the classical orbital period of an electron is by itself already a violation
of the quasi-statical assumption which was used to derive the models. If the characteristic ΓΔ𝑡

is small against 1 then the eq. (3.10) expands to

𝑃 = 1 − e−ΓΔ𝑡 ΓΔ𝑡→0≈ ΓΔ𝑡. (5.10)
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This is now a linear dependency of the probability on the rate and the time step. Yet this is
only applicable if the ionization rate is continued reasonably, which has been accounted for in
this thesis by introducing the BSI condition. However it has become clear the time step has
an influence on the field strengths 𝐸 required for ionization and the ionization model should
be chosen with respect to the atomic species. It is questionable if the concept of an ionization
rate is reasonable for time steps below 1 electron orbital cycle.

5.3.1 Double ionization

Double ionization can be neglected for small time steps Δ𝑡. The probability for double ioni-
zation in all calculations performed in this thesis never exceeded more than a few percent.

5.4 Influence of the pulse duration on charge states
When keeping the same pulse shape but choosing different pulse durations it is expected that
also the charge states will come to life after longer or shorter times. Previous considerations
about the importance of the time step should be kept in mind when from now on it will be
fixed to 1/50th of the laser period to sample the oscillating laser field at sufficient resolution.
Argon is used as a target atom to yield physical ionization rates even at such small time steps.

Figure 5.7: Influence of the pulse duration 𝑇pulse on the emersion of charge states in Argon
atoms. Three transitions are examined for their time of appearance in the three different models
due to three pulses of 25, 50, 75 fs duration, respectively. The corresponding laser intensity is
depicted on the y-axis. Ionization times are shown relative to the pulse maximum.

For the computation of the ionization rates and probabilities a temporal Gaussian pulse shape
was used with intensities ranging from about 3.5 · 1013 to 3.5 · 1021W/cm2. Three different
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pulse durations, 25, 50 and 75 femtoseconds, have been applied while the same Gaussian shape
was kept. In this examination the time is extracted where the ionization probability surpasses
90 %. Since no barrier suppression condition has been applied, yet, the results are completely
model-dependent. As expected the results in figure 5.7 show that first of all lower charge states
emerge earlier than higher ones. Secondly, higher pulse durations account for later emersion of
the same charge state. From the previous findings it could also be expected that limiting the
intensity to a certain value could have the effect that in the Landau-Lifshitz model Argon’s
highest charge state might not be reached. This is exactly the case in the rightmost plot
of figure 5.8 where only the BSI-extended ADK model manages to produce Ar18+ and the
Landau-Lifshitz and the Keldysh model both do not predict ionization for this state. The
BSI-extended ADK model depends only weakly on the scaling of the ionization potential ip in
the different charge states.

Figure 5.8: Influence of the pulse duration 𝑇pulse on the emersion of charge states in Argon
atoms. Three transitions are examined for their time of appearance in the three different models
due to three pulses of 25, 50, 75 fs duration, respectively. The ionization times are shown in
total. The pulses each reach the peak at half of the pulse duration, respectively.

In fig. 5.8 the results from fig. 5.7 are presented in a different manner, depicting the total
time until ionization is reached as a function of pulse duration 𝑇pulse. The dash-dotted lines
indicate the pulse duration of 50 fs.

Interpretation The tests showed the simple result that for longer or shorter pulses of the
same shape, there is a linear correlation between the pulse duration and the time a certain
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ionization probability is reached. With regard to PIC simulations where energy conservation
is not neglected pulse durations as short as the period of a laser cycle should be treated
carefully. In such a case is is strictly not valid to relate the power of the pulse to a pulse with
an oscillating field amplitude. For 𝜆 = 1µm the critical regime of pulse durations is located
below 10 fs since a laser period 𝑇period measures 3, 3 fs.

5.5 Charge state evolution for different laser wavelengths
In this section the approximation of a slowly varying laser-envelope will be replaced by an
oscillating electric field. In the following it will be examined if the implementation of a varying
field amplitude can result in a different evolution of the charge states. Similar to 5.4 the
times when 90% ionization probability occurs have been computed. In table 5.2 the set of
wavelengths for the test is shown. The pulse duration is set to 50 fs which equals about
2067 AU. For the intensity of the pulses to be approximately the same, the condition 𝑇period ≪
𝑇pulse has to be valid, as was discussed in the Theory chapter 3. Therefore the ratio of the
period to the pulse duration is shown in table 5.2.

wavelength [nm] wave number [cm−1] period [AU] period [fs] 𝑇period/𝑇pulse

160 6.25 · 104 22.06 0.53 0.01
320 3.13 · 104 44.13 1.07 0.02
640 1.56 · 104 88.25 2.13 0.04

1280 7.81 · 103 176.50 4.27 0.09
2560 3.90 · 103 353.00 8.54 0.17

Table 5.2: Set of wave numbers for the charge state time distribution test. In the last column
the ratio between the period 𝑇period and the pulse duration 𝑇pulse is shown to emphasize the
negligibility of the oscillation for the pulse power.
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Figure 5.9: Influence of different wave numbers on the emersion of charge states in Argon
atoms. The set of 5 wave numbers from tab. 5.2 determines the oscillation of electric field. The
wave numbers range from about 4 · 104 to 6 · 105 cm−1. A pulse duration of 50 fs was simulated in
each case and the horizontal lines indicate the results from fig. 5.8 with the slowly varying field
envelope.

In comparison to figure 5.8 the implementation of an oscillating electric field into a 50 fs
Gaussian pulse in figure 5.9 does not seem to affect the final states of the ions in each model.
Again the Landau- Lifshitz model ionizes only the 4+-state, while the Keldysh model manages
to ionize the +8-state and only the BSI-extended ADK model predicts an 18+ charge state.
The colored dash-dotted lines in the figure denote the time until the ionization probabilities
reach 90% as they were achieved in the analysis in section 5.4. All three plots have in common
that the moment when the threshold value is reached is either the same with 5.8 or generally
later. One also notices that there is no general tendency for the deviation from the envelope
case that could be matched to the scaling of the wave number. It is only to be noted that if a
marker deviates from the horizontal line, the deviation itself is larger for lower wave numbers.
The largest deviation observed is about 4 fs.
To anticipate the interpretation of the results there ought to be pointed out that the oscillating
field is very sensitive on the time step when the regions of very small pulse durations are
explored. The oscillation forces the electric field to pass through multiple orders of magnitude
in much shorter times than it would have before with a slowly-varying field envelope. It has
become clear by now that some ionization models can exhibit only a very small region where
ionization happens in a physical sense and with perceptible ionization rates. If the sampling
of the laser period 𝑇period is too coarse then discrete values of the electric field 𝐸 might not
fall into the small regime where the ionization model predicts tunneling. In comparison to the
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envelope-case threshold probabilities, like 𝑃 = 90% are reached with delay. Assume that the
laser period is sampled well enough to contain the threshold value at some point, the delay
time 𝑡Delay can be quantified. If, in the worst case, the amplitude of 𝐸 decreases right before
the threshold value was to be reached, the threshold is exceeded not until nearly half a period
has passed. This is valid if only the absolute value of the electric field is considered in the
models. Lower threshold probabilities than 90% decrease the delay time.
To prevent sampling problems in the following simulations the barrier suppression conditions
from (3.29) were being applied in the process. The model of Landau and Lifshitz will not be
examined anymore from here on, since the barrier suppression condition forestalls the action
of it. The model predicts ionization only for much higher field strengths than 𝐸crit

Monte-Carlo simulations In figures 5.10 to 5.14 Monte-Carlo simulations have been used to
model the interaction of a 50 fs laser pulse with Argon atoms in the cases of three laser wave
numbers in the Keldysh model. The method of operation is accounted for by the flowchart
4.1. The wave numbers 𝑘 in question are 3.9 · 103, 1.60 · 104 and 6.25 · 104 cm−1 from table 5.2.
In the upper part of the figures the pulse envelope and the corresponding oscillating field is
shown. The lower part depicts the evolution of charge states. The population of every charge
state is indicated by the color it carries. Dark blue means the state is completely unpopulated
while dark red denotes that 100% of the 𝑁 = 1000 particles that were simulated share the
charge state.
The final states are the same regardless of the wave number. Moving to larger wavelengths
steepens the gradient of the field strength in time resulting in more immediate transitions
between the charge states. The longer the period, the shallower the gradient of the electric
field implicating that more widespread charge state distributions are possible. However as the
amplitude 𝐸(𝑡) cycles through a minimum again, the meanwhile change of the envelope is
larger compared to the small-period case. This results in a yet steeper field gradient at the
beginning of a new laser cycle, thus enhancing the eventuality that the barrier-suppression
condition instead of the model itself is doing the ionization.
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Figure 5.10: Keldysh model
Wavelength: 2650 nm, pulse duration: 50 fs

Charge state evolution for 1000 particles
in a Monte-Carlo simulation. ...

Figure 5.11: BSIe ADK model
Wavelength: 2650 nm, pulse duration: 50 fs

... The green line in the upper plot marks the
field strength at each moment, ...

Figure 5.12: Keldysh model
Wavelength: 640 nm, pulse duration: 50 fs

... from which ionization probabilities
were calculated. ...

Figure 5.13: BSIe ADK model
Wavelength: 640 nm, pulse duration: 50 fs

... The blue curve illustrates the envelope
of the pulse.
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Figure 5.14: Keldysh model
Wavelength: 160 nm, pulse duration: 50 fs

The population of each charge state in
percent ...

Figure 5.15: BSIe ADK model
Wavelength: 160 nm, pulse duration: 50 fs

... is indicated by its color.

In figures 5.11, 5.13 and 5.15 a similar scenario has been simulated, using the BSI-extended
ADK model. Again the first, the middle and the last of the wave numbers from table 5.2 are
employed and in comparison to the Keldysh model, the ionization happens much more imme-
diate. The times of high population for each charge state have in general become shorter and
as such the influence of the different wave numbers is smaller. Mixed charge states can only
be seen in figure 5.13 but this seems more related to the time-distributed peaks of the field
amplitude coinciding with the small regions of field strength where in this model ionization is
noticeable. Thus 20 % or 30 % of the particles are ionized before the amplitude drops, leaving
the ratio of populated charge states constant for half a cycle. In contrast to the Keldysh model
where the full ionization process took an overall time of about 10 fs, in the BSI-extended ADK
model it was already completed in about 4 fs. All three figures for each model share again that
the final charge state is reached at the same time with respect to the pulse maximum in the
order of femtoseconds.

Interpretation Since the process of interest is field ionization in the tunneling or barrier-
suppression regime, the photon energy going along with the wave number is of no importance.
However for shorter pulses the wave number 𝑘 determines the power of the pulse, accounting for
a difference in the intensity if energy conservation was to be considered. Ionization processes
take energy from the pulse and therefore diminish its intensity. Note that the power of an
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envelope-only pulse is double the power of an oscillating field of the same shape, as was shown
in chapter 3. However, as energy conservation is neglected still an effect on the ionization
dynamics could be perceived. For pulse durations longer than several 10 or 100 femtoseconds
wherein many laser cycles are performed, different wave numbers affect the distribution of
charge states on time scales of the order of ∼ 100 attoseconds to several ∼ fs. In the case
where the oscillating field has a monotonously growing envelope, charge state population ratios
can stay constant for up to half a laser cycle. This could be well perceived in fig. 5.13. If
the wave number becomes even higher the delay effect described before vanishes and the
ionization dynamics resemble the envelope-only case. It should be remembered, however, that
higher wave numbers lead to the multi-photon regime eventually.
Relating the time scales from this analysis to length scales in a simulation yields

𝑠 = 𝑐
𝑇

2 ≈ 3 · 108 m
s · 30 fs

2 = 4.5µm. (5.11)

Here, 𝑇 denotes approximately the time where the pulse intensity is varying. In a PIC simula-
tion with similar properties 8 orders of magnitude of intensity would be traversed on a length
scale of 4.5µm. However this accounts only for the slowly-varying envelope. The oscillation
of the field results in intensity gradients of 8 orders of magnitude on sub micrometer scales.
Employing different models and wave numbers leads already to very different ionization dy-
namics in these simulations. Nevertheless such gradients are still moderate compared to the
gradients produced in a laser-matter interaction with a solid state target. According to the
high electron density of these targets the laser would penetrate only on the & 10 nm scale.
There, the relativistic intensities of 1018 . . . 1020 W/cm2 are reduced exponentially to 0. The
outcome of simulations with different ionization models might exhibit crucial differences.

5.6 Initial phases in ultrashort pulses
The production of shorter and more intense pulses must currently employ short laser wave-
lengths [22] in the X-ray regime. Very short pulse durations indicate that the initial phase of
the laser wave might have an essential effect on the charge state evolution. The initial phase
𝜙initial determines the regions of low amplitude in space and time. Hence it is expected to have
a similar effect as the wave number 𝑘. It was observed before, that in a scenario where the
pulse duration 𝑇pulse large compared to the laser period, mixed charge states were generated.
In figures 5.16, 5.18 and 5.20 a much shorter pulse duration of 5 fs has been chosen and the
maximum field strength has been reduced to 101.5 AU. The laser wavelength measures 1 𝜇m
accounting for a laser period of 3.3 fs. It has been sampled with 50 points allowing for no more
than roughly one laser cycle under the Gaussian envelope. The initial phases considered are
45∘, 60∘ and 75∘. For this set of three simulations in the Keldysh model the particles reach



52 5 Results and Interpretation

a maximum charge state of +7. However as the initial phase determines the position of the
roots in the | sin(𝜔𝑡 + 𝜙initial)|-function, varying the field amplitude which results in not only
changing the time-dependent succession of charge states but also the final distribution. In
figure 5.16 the final state is an ensemble of both +6 and +7 charge states. Except from this
figure the final state in the remaining two cases is reached at nearly the same time of about
0.7 laser cycles. The vicinity of a field strength minimum results in a time period of constant
charge state population.

Figure 5.16: Keldysh model
Pulse duration: 5 fs, initial phase: 45∘

Charge state evolution for 𝑁 = 1000 par-
ticles in a Monte-Carlo simulation. ...

Figure 5.17: BSIe ADK model
Pulse duration: 5 fs, initial phase: 45∘

... The green line in the upper plot marks the
field strength at each moment, ...
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Figure 5.18: Keldysh model
Pulse duration: 5 fs, initial phase: 60∘

... from which ionization probabilities
were calculated. ...

Figure 5.19: BSIe ADK model
Pulse duration: 5 fs, initial phase: 60∘

... The blue curve illustrates the envelope
of the pulse.

Figure 5.20: Keldysh model
Pulse duration: 5 fs, initial phase: 75∘

... The wavelength measures
𝜆 = 1µm. ...

Figure 5.21: BSIe ADK model
Pulse duration: 5 fs, initial phase: 75∘

... The color in the lower plot indicates
the population of the charge state.

The same scenario has been employed in the BSI-extended ADK model. There is a significant
difference to the Keldysh model in the final state of the simulations as here the particles
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reach +16 multiplicity for each initial phase. Common to the simulations is that the final
charge state is reached after about 0.8 laser periods. Different for all three phases 𝜙initial is the
sequence of ionization. For an initial phase of 60∘ in figure 5.19 there exist three subsequent
charge states at the same time. Where in fig. 5.21 there is a period of constant charge state
+2 only in the beginning, the subsequent states exhibit nearly no visible transition time. In
fig. 5.17 starting from the +5 state the lower plot shows that at some time about 55% of the
particles get ionized while 45% remain in the lower state. When 0.05 fs these get ionized as
well, simultaneously the next higher charge state is populated. The ratio of the two populated
states remains constant.

Interpretation In the course of the simulations it has become clear that the final states
are reached at the same time independent from the variation of the initial phase. The only
exception is when the phase shifts the minimum of the field amplitude to the position where the
envelope would reach its maximum. Thus the overall maximum field strength is lower which
could result in a lower final charge state. All images share the immediate transitions for large
gradients in the vicinity of amplitude minima. In cases where the gradient is not so steep or
the peak amplitude of a laser cycle coincides shortly with the tunneling regime of a particular
charge state, mixed charge state populations can be generated. On few femtosecond time scales
the initial phase 𝜙initial is therefore confirmed to have a similar effect as the wave number 𝑘.
It is however much more prominent and the differences are more obvious on time scales where
𝑇pulse & 𝑇period. It is noteworthy that the ratio of the participating charge states stays rather
constant in the further increase of the electric field but its actual value can differ much from
small changes in the initial phase. In such a way the ionization dynamics can be very different.
In a similar fashion to sec 5.5 the results relate to spatial dimensions in a PIC simulation. On
a length scale of 0.9µm 6 orders of magnitude in intensity are traversed. Typical targets
measure a few micrometers in depth. In the BSIe ADK model 17 different charge states are
distributed on this length scale whereas the Keldysh model predicts only 7 subsequent Argon
charge states. Depending strongly on the initial phase of the laser wave mixed charge states
might exist and spread over the length of a few ∼ 100 nm each. Their composition is even
more sensitive on 𝜙initial. With higher gradients the outcome in relativistic-intensity laser-
matter interaction simulations is currently unpredictable and may to great extent depend on
the discretization of the laser pulse.

5.7 Spatial charge state distribution
This section concentrates on an analysis of the differences in the charge state distribution in
two dimensions. A simple approximation by the BSI condition is compared to the evolution of
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charge states over time and space in two the Keldysh and the BSIe ADK model. Figure 5.23
shows the interaction region at the beginning of a Gaussian pulse of 30µm length and 3µm
width. The intensities at the locations are depicted in W/cm2. Three colored plots below show
an approximation of the final charge state distribution predicted by the barrier suppression
condition (top), the evolution in the Keldysh model (center) and in the BSI-extended ADK
model (bottom).
All three charge state distributions share the general sequence and the size of their overall
populated areas with neutral atoms at the right upper and lower edges ranging to +2 in the
center. It can be seen however that it the Keldysh model already areas populated by one charge
state exhibit particles of the next higher charge state, occasionally. The overall distribution is
yet similar to that of the BSI-condition. In the case of the BSIe ADK model a clear difference
for the small left center region of higher intensities exists. The ions carry a charge of +8 in
this area and the transition region from the +2-zone only measures a few nanometers. Apart
from the latter zone where a few +4 and +6-states are spread, the number of single higher
charged particles scattered over the regions is much smaller than in the Keldysh simulation.
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Figure 5.22: Schematic picture of the scenario for the spatio-temporal charge state distribution analysis. The light
blue regions mark the regions examined and the values for the intensity 𝐼 denote the final pulse properties after its linear
increase in time for about 𝑇 = 6.7 fs and 100 Monte- Carlo iterations
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Figure 5.23: Low slope region

Spatio-temporal charge state
distribution of a Gaussian pulse
of 30µm length and 3µm width
interacting with Argon atoms. The
upper plot shows the intensity
distribution in the region. ...

Figure 5.24: Steep slope region

... The plot below depicts the
charge state distribution based on
the BSI condition applied to the
final pulse shape. The two plots
below show the Keldysh model and
BSIe ADK model results after ...

Figure 5.25: Peak region

... 100 Monte-Carlo iterations
in 6.7 fs. The intensities grew
linearly from 0 to the distributions
shown above. Each image section
shows an area of 1µm2 from the
lateral center of the pulse.

In figure 5.24 the same scenario as before has been simulated in the region of a steeper slope
and with laser intensities ranging from about 1019 to 1020 W/cm2 on the ridge of the pulse. In
lateral direction it ranges from 4 · 1017 to 8 · 1019 W/cm2. In the BSI approximation the most
prominent charge state is +8 and only the small edge areas range down to +4. The highest
charge states reached are tenfold positively charged argon ions. The Keldysh simulation shares
the large +8-section and also the gradient down to +4. These areas are roughly of the same
size of about 0.15µm in width at the most. An apparent difference is that in the Keldysh
simulation the +9, +10 charge states populate the full length of the target area. Only the
width diminishes but in the ridge region near the notional propagating axis they reach up to
0.6µm further into the target than predicted by the BSI-condition.
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In contrast, the simulation of the BSIe ADK model shows that already at an intensity of about
1018 W/cm2 the +18 charge state is widely populated. On a small, nearly imperceptible area
of +17 ions there follows a larger region homogeneously populated by +16 states. It measures
about 0.2µm perpendicular to its boundaries. The lowest charge states in this model are +9
in the upper and lower right corners. Figure 5.25 shows the region where on the left side
border of the target area, the pulse peak with an intensity of nearly 4 · 1021 W/cm2 is located.
The variation of the intensity is far below one order of magnitude and only in 𝑧-direction it
drops to about 8 · 1019 W/cm2. The barrier suppression condition and the Keldysh model
predict a very similar final state with a large, homogeneously distributed area of +16 argon
ions and a 0.1µm small transition region down to the +10 state on each side far from the
center 𝑥-axis. While the barrier suppression condition and the Keldysh model do not predict
complete ionization, the BSIe ADK model generates +18 charge states for all of the target
region without exception.

Interpretation In the beginning of the pulse in figure 5.23 the prediction by BSI matched
the simulated distribution of charges states well, except for the BSIe ADK model. The large
areas of homogeneous population it shared with the other two are believed to result from the
BSI condition, itself. The previous examinations have shown that for low charge states the
BSI-extended ADK model ionizes at higher field strengths than the other models. Since in the
Monte-Carlo simulations also the barrier suppression condition is used to prevent unphysical
behavior the large areas of +1 and +2 seem likely to have been enforced by it. For higher
intensities and subsequently higher charge states the roles of the models quickly exchange
which could be seen in fig. 5.24. It is noteworthy how large the differences from the BSI
approximation are in this figure. Not only the BSIe ADK model that seems to have very
fast ionization dynamics but also the Keldysh model exhibits large regions of higher charge
states that were not predicted by barrier suppression. This is of course to be expected since
the models describe the tunneling effect which starts to contribute at intensities much lower
than the Stark shifted appearance intensity for a charge state. However, it is a fact to be
kept in mind when estimating the effect of a laser pulse on a target. Instead of considering
the current intensity of a pulse the effect on the target is to be integrated over time. The
final state eventually seems to be the same if the peak intensity of the laser is high enough to
ionize all atoms and ions completely. During the ionization process however the charge state
distributions can differ on micrometer scales, thus altering the ionization dynamics even in
underdense target simulations to different results. The extension of the BSI-condition and the
Keldysh model to non-hydrogen-like atoms in this thesis may account for the difference in the
final states in figure 5.25. However such approximations are commonly used in the application
of existing non- relativistic field ionization models to simulation scenarios. It became obvious
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in this analysis that these scenarios have to be approached with more care as the existing
models yield many problems in the description of the underlying physical processes.



6 Conclusion

The results of this thesis show that in the simulation of laser-matter interaction with existing
field ionization models and relativistic intensity, short laser pulses largely different outcomes
are produced. Even for moderate gradients where laser intensities vary over 3 to 9 orders of
magnitude on the scale of a few femtometers, the ionization dynamics exhibit clearly distin-
guishable differences. The temporal evolution of a charge state differs on a femtosecond scale
depending on the choice of the model. Thus spatio- temporal ionization profiles are different
on lengths of ∼ 100 nanometers. In current PIC simulations the interaction with solid state
targets are simulated. Those simulations feature gradients of up to 21 orders of magnitude
over Skin-depth scales of a few ∼ 10 nanometers. With such extreme gradients the existing
non-relativistic field ionization models cannot be expected to describe the processes accurately,
anymore. The extreme conditions of the simulations violate the quasi-static approximations
of the models. Smaller time steps would be required to allow for large intensity gradients
and to sample a laser wavelength with more than just 50 points. On time scales of a few
attoseconds, however, the models cannot be applied either since all of them average over the
electron motion. A typical electron orbital cycle measures 150 as. Differences in the prediction
of the models grow with the atomic number 𝑍. Thus better extensions to other atoms than
hydrogen are required.





7 Outlook

7.1 Outlook
In the course of this thesis energy conservation has been neglected in all simulations. For
future analyses an ionization current or the reduction of field strength with each ionization
should be introduced. More models and elements could be added to the comparison and
an application example could be simulated. Therefore the charge state development for the
measured data of a laser pulse produced in the DRACO laser [19] might provide new insight.
It is also important to evaluate the error for a PIC simulation using macro-particles. Charge
state distributions could be calculated analytically and then be compared to the simulation
results. An assessment of a minimum grid size with respect to an error threshold could be
gained. In this thesis multi-photon ionization has not been discussed any further than in
theory. It is however desirable to evaluate the contribution of this effect to the generation of
pre-plasma at the beginning of the laser pulse.
The work of Reiss [15] has provided even stricter limits to the tunneling regime since in the
previous theories relativistic effects have been neglected. It could therefore be interesting to
evaluate to what extent the existing models leave those boundaries in simulation scenarios.
Finally the 𝑍-dependency of the models should be explored further to increase accuracy in the
application to a wider range of atoms. The work of [18] can turn out useful for that.





8 Bibliography

[1] P. Agostini, F. Fabre, G. Mainfray, G. Petite, and N. K. Rahman. Free-Free Transitions
Following Six-Photon Ionization of Xenon Atoms. Physical Review Letters, 42(17):1127–
1130, April 1979.

[2] M. V. Ammosov, N. B. Delone, and V. P. Krainov. Tunnel ionization of complex atoms and
of atomic ions in an alternating electromagnetic field. Soviet Physics - JETP, 64(6):1191–
1194, 1986.

[3] D. Bauer and P. Mulser. Exact field ionization rates in the barrier-suppression regime
from numerical time-dependent Schr&ouml;dinger-equation calculations. Physical Review
A, 59(1):569+, January 1999.

[4] Berestetzkii. Coefficients of spontaneous transitions of hydrogen atom. http://www.
ioffe.ru/astro/QC/CMBR/sp_tr.html. Online; 10-June-2013.

[5] N. B. Delone and Vladimir P. Krainov. Tunneling and barrier-suppression ionization of
atoms and ions in a laser radiation field. Physics-Uspekhi, 41(5):469–485, May 1998.

[6] N. B. Delone and Vladimir P. Krainov. AC Stark shift of atomic energy levels. Physics-
Uspekhi, 42(7):669, 1999.

[7] F.H.M. Faisal. Exact perturbation theory of multiphoton processes at high intensities. Il
Nuovo Cimento B Series 11, 33(2):775–795, 1976.

[8] Hermann Haken and Hans Christoph Wolf. Atom- und Quantenphysik / Einführung in
die experimentellen und theoretischen Grundlagen ; mit 29 Tabellen, 167 Aufgaben und
vollständigen Lösungen. Springer, Berlin ; Heidelberg [u.a.], 6., verb. und erw. aufl.
edition, 1996.

[9] L. V. Keldysh. Ionization in the field of a strong electromagnetic wave. Soviet Physics
JETP, 20:1307–1314, May 1965.

[10] V. P. Krainov. Ionization rates and energy and angular distributions at the barrier-
suppression ionization of complex atoms and atomic ions. J. Opt. Soc. Am. B, 14(2):425–
431, Feb 1997.

http://www.ioffe.ru/astro/QC/CMBR/sp_tr.html
http://www.ioffe.ru/astro/QC/CMBR/sp_tr.html


64 8 Bibliography

[11] L.D. Landau and E.M. Lifshitz. Course of Theoretical Physics Vol 3 Quantum Mechanics.
Pergamon Press, 1958.

[12] Peter Mulser and Dieter Bauer. High power laser-matter interaction. Springer tracts in
modern physics. Springer, Berlin, 2010.

[13] C. Perego, D. Batani, A. Zani, and M. Passoni. Target normal sheath acceleration ana-
lytical modeling, comparative study and developments. Review of Scientific Instruments,
83(2):02B502, 2012.

[14] Vladimir S. Popov. Tunnel and multiphoton ionization of atoms and ions in a strong laser
field (Keldysh theory). Physics-Uspekhi, 47(9):855–885, October 2007.

[15] H. R. Reiss. Limits on Tunneling Theories of Strong-Field Ionization. Physical Review
Letters, 101(4):043002, July 2008.

[16] J. J. Sakurai. Modern Quantum Mechanics (Revised Edition). Addison Wesley, 1 edition,
September 1993.

[17] H. Schulz. Statistische Physik: beruhend auf Quantentheorie ; eine Einführung. Deutsch,
2005.

[18] Yulian V. Vanne and Alejandro Saenz. Solution of the time-dependent dirac equation
for multiphoton ionization of highly charged hydrogenlike ions. Phys. Rev. A, 85:033411,
Mar 2012.

[19] Rainer Weisflog. Dresden laser acceleration source. http://www.hzdr.de/db/Cms?pOid=
32076&pNid=0. Online; 10-June-2013.

[20] D.M. Wolkow. Über eine klasse von lösungen der diracschen gleichung. Zeitschrift für
Physik, 94(3-4):250–260, 1935.

[21] J.J. Yeh. Atomic calculation of photoionization cross-sections and asymmetry param-
eters. http://ulisse.elettra.trieste.it/services/elements/WebElements.html.
Online; 10-June-2013.

[22] Song F. Zhao, Xiao X. Zhou, Peng C. Li, and Zhangjin Chen. Isolated short attosecond
pulse produced by using an intense few-cycle shaped laser and an ultraviolet attosec-
ond pulse. Physical Review A (Atomic, Molecular, and Optical Physics), 78(6):063404+,
December 2008.

http://www.hzdr.de/db/Cms?pOid=32076&pNid=0
http://www.hzdr.de/db/Cms?pOid=32076&pNid=0
http://ulisse.elettra.trieste.it/services/elements/WebElements.html


Erklärung

Hiermit erkläre ich, dass ich diese Arbeit im Rahmen der Betreuung am Institut für Kern- und
Teilchenphysik ohne unzulässige Hilfe Dritter verfasst und alle Quellen als solche gekennzeich-
net habe.

Marco Garten
Dresden, Juni 2013


	Motivation
	Introduction
	Theory
	Atomic units
	Basic Characteristics
	Deriving an intensity from an oscillating electric field
	Ionization potential
	Ionization rate
	Laser characteristics
	Atom characteristics

	Ionization probability

	Physical Ionization effects
	Multi-photon Ionization
	Below Threshold
	Above-Threshold

	Field Ionization
	Barrier Suppression
	Tunneling


	Ionization Models
	Landau-Lifshitz
	Keldysh theory
	Ammosov, Delone, Krainov (ADK)

	Overview
	Parameters, Rates and Probability


	Methods
	Guideline of approach
	Spatial distribution

	Technical implementation

	Results and Interpretation
	Ionization rate field strength dependency
	Ionization rate Z-dependency
	Analytic treatment
	Numerical results
	Barrier Suppression field strengths

	Time step influence on probabilities
	Double ionization

	Influence of the pulse duration on charge states
	Charge state evolution for different laser wavelengths
	Initial phases in ultrashort pulses
	Spatial charge state distribution

	Conclusion
	Outlook
	Outlook

	Bibliography

