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Cover Picture - Hermetically sealed 2D semiconductors
Two-dimensional  (2D)  materials  have  gained  considerable  attention  in  the  last  decade  as  potential
candidates for carrying forward further miniaturization as per the Moore’s law. While the investigations
have revealed good transport properties, their instability in air yet limits their fundamental study as well as
usage in technological applications. 
The illustration demonstrates a new encapsulation method developed to protect 2D materials from air and
moisture to facilitate long-term stability of the devices. The method involves sandwiching the 2D material
between  two  layers  of  hexagonal  boron  nitride  (hBN,  blue  in  the  illustration).  The  top  hBN  layer
passivates the  material  from the  environment  and bottom hBN suppresses  charge transfer  from the
substrate (pink in the illustration). 
When  the  active  channel  is  fully  encapsulated  between  two  hBN  layers,  how  can  the  electrical
connections  be  made?  This  can  be  achieved  by  using  “via-contacts”,  which  are  metal  electrodes
embedded within the top hBN layer. With this technique, we could simultaneously achieve encapsulation
and an electrical connection to the underlying 2D material without any direct lithographic patterning. As a
result, the 2D material remains pristine, and devices with long-term stability as well as high performance
could be realized. In the future, sensitive 2D materials could be integrated into electronic components,
without impairing their performance.
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Preface by the directors 

 

The Institute of Ion Beam Physics and Materials Research (IIM) conducts materials research for 

future applications in, e.g., information technology. To this end, we make use of the various 

possibilities offered by our Ion Beam Center (IBC) for synthesis, modification, and analysis of thin films 

and nanostructures, as well as of the free-electron laser FELBE at HZDR for THz spectroscopy. The 

analyzed materials range from semiconductors and oxides to metals and magnetic materials. They are 

investigated with the goal to optimize their electronic, magnetic, optical as well as structural 

functionality. This research is embedded in the Helmholtz Association’s programme “From Matter to 

Materials and Life”. Seven publications from last year are highlighted in this Annual Report to illustrate 

the wide scientific spectrum of our institute. 

After the scientific evaluation in the framework of the Helmholtz Programme-Oriented Funding 

(POF) in 2018 we had some time to concentrate on science again before end of the year a few of us 

again had to prepare for the strategic evaluation which took place in January 2020, which finally was 

also successful for the institute. 

In 2019, there have been a number of organizational changes. First, and most prominently, we 

were able to hire Prof. Dr. Anton Wallner as new head of our department Accelerator Mass 

Spectrometry (AMS) and Isotope Research. This appointment is jointly with the TU Dresden where 

Toni has received a chair in the Institute of Nuclear and Particle Physics. Along with this employment, 

our scientific advisory board and board of trustees approved the acquisition of a dedicated 1 MV 

accelerator for AMS including a laser detachment system. With this move, we hope to widen the 

scope of the user facility Ion Beam Center to new user communities in the field of nuclear 

astrophysics, environmental and geosciences. Second, the department Ion Beam Center is now 

headed by Dr. Stefan Facsko, who took over the responsibility from Dr. Johannes von Borany who 

stepped down for partial retirement. Stefan has been working in the Ion Beam Center since 2003 in 

various functions and is one of our most established researchers. We wish him all the best for this 

responsible position. Third, after the successful evaluation of Dr. Denys Makarov we created a new 

department Intelligent Materials and Devices, which is now headed by Denys. For his outstanding 

work in the field of magnetic sensor technology he also received the HZDR Research Award 2019. In 

the same ceremony, Dr. Jacob König-Otto received the HZDR Doctoral Prize 2019 for his dissertation 

at our Institute. Fourth, in fall we struck a new path and created a young researcher group on 

“Immuno-oncology on a chip: nano-assisted screening for cancer therapy” across disciplines and 

Institutes headed by Dr. Larysa Baraban. Larysa heads a group in the Institute of 

Radiopharmaceutical Cancer Research and collaborates closely with our colleagues Dr. Artur Erbe on 

nanodevices and Dr. Denys Makarov on sensorics. We believe that this synergetic approach will pave 

the way to a fast and cost-efficient screening technology for personalized health care. 

Again, in 2019, the level of newly received third-party funding was very good. In particular, we 

received the funding for two Helmholtz Innovation Laboratories (HIL); one on thermal treatment 

technology for defect engineering (UltraTherm) headed by Dr. Lars Rebohle and one on flexible 

sensors (FlexiSens) headed by Dr. Denys Makarov. The main emphasis of both HILs is to provide 

support of and technology transfer to small and medium enterprises in the respective technological 

areas. We are sure that in addition to our ion technology service provided via the HZDR Innovation 

GmbH both Innovation Labs will boost our technology transfer activities. 

Several conferences and workshops were organized by scientists from our institute: the “Ion Beam 

Physics Workshop” as the annual meeting of the German Ion Beam Community was organized by 

Dr. Stefan Facsko and attracted around 50 participants to discuss the newest national developments 
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and research in the field of ion beam physics. In addition, the “3rd European Focused Ion Beam 

Network Workshop” was organized by Dr. Hans-Jürgen Engelmann and co-workers; 135 participants 

from 17 countries found their way to HZDR to discuss current research topics and exchange 

experience in Focused-Ion-Beam (FIB) and Scanning-Electron-Microscopy (SEM) work. 

Finally, we would like to cordially thank all partners, friends, and organizations who supported our 

progress in 2019. Special thanks are due to the Executive Board of the Helmholtz-Zentrum Dresden-

Rossendorf, the Minister of Science and Arts of the Free State of Saxony, and the Ministers of 

Education and Research, and of Economic Affairs and Energy of the Federal Government of 

Germany. Numerous partners from universities, industry and research institutes all around the world 

contributed essentially, and play a crucial role for the further development of the institute. Last but not 

least, the directors would like to thank again all members of our institute for their efforts and excellent 

contributions in 2019. 

 

 

 

Prof. Manfred Helm   Prof. Jürgen Fassbender 
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ABSTRACT: Indium selenide (InSe) and gallium selenide
(GaSe), members of the III−VI chalcogenide family, are
emerging two-dimensional (2D) semiconductors with appeal-
ing electronic properties. However, their devices are still
lagging behind because of their sensitivity to air and device
fabrication processes which induce structural damage and
hamper their intrinsic properties. Thus, in order to obtain
high-performance and stable devices, effective passivation of
these air-sensitive materials is strongly required. Here, we
demonstrate a hexagonal boron nitride (hBN)-based encap-
sulation technique, where 2D layers of InSe and GaSe are covered entirely between two layers of hBN. To fabricate devices out
of fully encapsulated 2D layers, we employ the lithography-free via-contacting scheme. We find that hBN acts as an excellent
encapsulant and a near-ideal substrate for InSe and GaSe by passivating them from the environment and isolating them from the
charge disorder at the SiO2 surface. As a result, the encapsulated InSe devices are of high quality and ambient-stable for a long
time and show an improved two-terminal mobility of 30−120 cm2 V−1 s−1 as compared to mere ∼1 cm2 V−1 s−1 for
unencapsulated devices. On employing this technique to GaSe, we obtain a strong and reproducible photoresponse. In contrast
to previous studies, where either good performance or long-term stability was achieved, we demonstrate a combination of both
in our devices. This work thus provides a systematic study of fully encapsulated devices based on InSe and GaSe, which has not
been reported until now. We believe that this technique can open ways for fundamental studies as well as toward the integration
of these materials in technological applications.

KEYWORDS: indium selenide, gallium selenide, hexagonal boron nitride, encapsulation, photoluminescence, stable electronics,
field-effect transistors, photodetectors

The III−VI chalcogenide family (MX; M = Ga, In and X =
S, Se, Te) has attracted considerable attention in recent

years owing to its interesting properties and underlying physics
at low dimensions. The two most prominent members of this
family are indium selenide (InSe) and gallium selenide (GaSe),
which are promising candidates for various applications such as
high-speed electronics,1−4 optoelectronics,5−10 sensors,11−13

and terahertz technology.14 Recently, devices based on InSe
have seen many advancements owing to its high electron
mobility1−3 resulting from its low electron effective mass (me*
= 0.143 mo)

15 and a direct band gap lying in the near-infrared
range.16 The electron mobility of ∼1000 cm2 V−1 s−1 obtained
at room temperature1−3 in InSe devices is the highest value
reported for an n-type two-dimensional (2D) material so far.
GaSe, on the other hand, is a p-type material with a band gap
of 2.11 eV in bulk and well known for its optical
properties.17−20 In terms of electronic transport, few-layered
GaSe has revealed mobilities of 0.1−0.6 cm2 V−1 s−1 when

integrated as a channel into field-effect transistors
(FETs).8,11,20 Unlike InSe, GaSe is not a high-mobility
material due to the presence of heavy holes, but it is still
very appealing for optoelectronics,8,21,22 single-photon emis-
sion,23 nonlinear optics,24 and terahertz applications.14 Despite
many promising properties of InSe and GaSe, limited work has
been done exploiting them into devices because of their
instability under ambient conditions.
Though GaSe has been demonstrated to degrade rapidly on

interaction with ambient air,21,25−27 the question whether InSe
is air-sensitive or not is yet unclear within the scientific
community. Some reports have claimed it to be relatively
stable with no observable degradation over time4,26,28,29 and
extracted high mobilities under normal atmospheric con-
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ditions,2,3 while others observed that it degrades on contact
with water and oxygen.30−32 Even standard process steps of
device fabrication involving lithographic patterning, resist
spinning, and solvents’ dips can cause considerable structural
damage, degrading the quality of the material and resulting in
poor performance of the devices.7,33 It is worth mentioning
that most previous reports which demonstrated high mobility
on bare InSe used thicker layers (>30 nm) and shadow masks
to fabricate their devices.2−5 However, as InSe layer thickness
approaches the quantum confinement limit, it becomes
increasingly sensitive to environmental influences such as
oxygen, moisture, charge traps in the dielectric and
contaminations from chemical solvents, leading to fast and
uncontrollable morphological changes and poor device
performance. Therefore, in order to obtain high-performance
and stable devices based on these materials, effective
encapsulation techniques should be developed to protect
InSe and GaSe layers against degradation.
Recently, the techniques of dry oxidation32 and seeded

atomic layer deposition (ALD)34 have been demonstrated to
overcome the instability of InSe. While both techniques use
oxide-based encapsulation, they provide only top encapsula-
tion, whereas the bottom surface of InSe rests on a SiO2
substrate. SiO2 has been revealed to be an unsuitable dielectric
for 2D materials as it damages the material’s quality and device
performance by inducing the charge disorder at the interface
due to scattering from charge traps, impurities, and surface
roughness.35,36 InSe-based FETs have previously shown
substantial hysteresis and unreliability in their I−V character-
istics due to charge trapping at the InSe−SiO2 interface and
hydration on the SiO2 surface.

2 Moreover, ALD encapsulation
requires lithography to fabricate devices, which as discussed
above leads to further unreliability of the devices. For GaSe,
hexagonal boron nitride (hBN) as top encapsulation has been
recently reported, with a focus on its optoelectronic proper-
ties.21 Though ambient-stable GaSe photodetectors were
achieved, the performance was inferior to those reported on
the SiO2 substrate.

8,22,37

Here, we report a hBN-based encapsulation, where 2D layers
of InSe and GaSe are sandwiched between two layers of hBN;
top hBN passivating the 2D layer from the environment and
bottom hBN acting as a spacer and suppressing charge transfer
to the 2D layer from the SiO2 substrate. To fabricate the
devices from fully encapsulated InSe and GaSe layers, we
employ the technique of lithography-free via-contacts,38 which
are metal contacts embedded within hBN flakes and allow us
to simultaneously achieve encapsulation and an electrical
connection to the underlying 2D layer without any direct
lithographic patterning. Based on our results, we find that full
hBN encapsulation preserves InSe in its pristine form and
suppresses its degradation with time under ambient conditions.
Consequently, the electronic properties of encapsulated InSe
are significantly improved, leading to a two-terminal field-effect
mobility (μFE) ranging 30−120 cm2 V−1 s−1 and an on/off ratio
of 104 at room temperature as compared to μFE of mere ∼1
cm2 V−1 s−1 obtained for unencapsulated devices. In addition,
encapsulated InSe devices are stable for a prolonged period of
time, overcoming their limitation to be air-sensitive. On
employing full hBN encapsulation to GaSe, photolumines-
cence (PL) is dramatically improved and a high photo-
responsivity of 84.2 A W−1 at 405 nm is obtained.
This work advances previous efforts to encapsulate 2D layers

of InSe and GaSe using hBN. The full hBN encapsulation

technique passivates the air-sensitive layers from various
degrading factors and preserves their unaltered properties.
While previous studies have reported either good performance
or long-term stability, we demonstrate a combination of both
in our devices. The encapsulation technique we employ is
robust and easily transferrable to other complex 2D materials
which might not be compatible to the chemistry of ALD and
dry oxidation techniques. Thus, this method opens up new
avenues for the investigation of 2D materials which have been
restricted so far in their fundamental study and applications
due to environmental sensitivity.

■ EXPERIMENTAL SECTION
The hBN/2D/hBN (here 2D: InSe and GaSe) heterostructures are
fabricated by using the van der Waals (vdW) transfer technique as
described by Wang et al.39 In order to avoid exposing the 2D layers to
air, the process steps from exfoliation of its bulk crystal until the 2D
layers are fully covered between top and bottom hBN are performed
inside a nitrogen-filled glovebox. Via-contacts used for the devices are
fabricated as shown in the schematic of Figure 1a. hBN flakes (30−40

nm thick, crack- and residue-free) exfoliated onto a 285 nm SiO2/Si
substrate are identified using optical contrast and subsequently etched
into desired electrode patterns using reactive-ion etching. The etched
holes are then filled with 20 nm palladium (Pd)/40 nm gold (Au) by
electron-beam evaporation. The via-contact is then picked up (Figure
S1) and laminated onto the targeted 2D flake resting on a bottom
hBN in a way that all via-metal electrodes cover the flake (Figure 1b).
After full encapsulation, the whole assembly is moved out of the

Figure 1. Fabrication of Pd/Au via-contacts and two configurations of
InSe-based device geometries investigated in this work. (a) Step-wise
illustration of the via-contact fabrication process. (b) Schematic of the
InSe-via device when the via-contact hBN covers InSe in a glovebox
to encapsulate it and to form an electrical connection. (c) Optical
image of the InSe-via device measured in this work. ∼9.6 nm-thick
InSe flake (white dashed line) is sandwiched between bottom hBN
and top via-hBN. The black solid lines in the enlarged image highlight
multiple Pd/Au metal contacts (numbered 1−8) embedded in hBN,
which form a vdW contact with the underlying InSe layer. (d,e)
Schematic and optical image of an unencapsulated device,
respectively, white dashed line indicates the InSe flake on the SiO2
substrate and metal electrodes fabricated by depositing Pd/Au metal.

ACS Applied Materials & Interfaces Research Article
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glovebox for fabricating metal extensions to the via-metals and contact
pads, where the probes can be placed to carry out electrical
measurements (see Methods and Supporting Information for details
on the fabrication process). Figure 1b,c shows the schematic and the
optical micrograph of one such InSe-via device, respectively, where
black solid lines (in the enlarged image of Figure 1c) show the via-
metal in intimate contact with the underlying InSe layer. The
heterostructures are fabricated in a contamination-free environment,
so that the layers have clean and impurity-free interfaces. Having
multiple via-contacts in one hBN flake allows us to contact and
measure multiple devices on one single InSe flake. Figure 1d,e shows
the schematic and the optical image of an unencapsulated InSe device,
respectively, fabricated by electron beam lithography and metal
deposition on InSe layers exfoliated directly onto a 285 nm SiO2/Si
substrate. For a consistent comparison, both encapsulated and
unencapsulated devices are fabricated with the same thickness of
InSe that is ∼9.6 nm or 12 layers (confirmed with atomic force
microscopy, shown in Figure S2) and the same configuration of the
metal contacts (Pd: 20 nm/Au: 40 nm) deposited by electron-beam
evaporation.

■ RESULTS AND DISCUSSION
The properties of the exfoliated thin layers depend strongly on
the quality and composition of the bulk crystal. Figure 2a,b

illustrates the schematics of top and side views of few-layered
InSe. Energy-dispersive X-ray spectroscopy (EDS) and Raman
spectroscopy are used to characterize the bulk and few layers of
both InSe and GaSe. Figure 2c presents the EDS spectrum and
compositional analysis of InSe bulk. The spectrum shows only
indium and selenium peaks without any traces of impurities,
which confirms high purity of the InSe crystals. The atomic
ratio of In/Se is found to be 1:1. The Raman spectra measured
at room temperature for various thicknesses ranging 7−22 nm
of InSe are shown in Figure 2d. In all spectra, four major
vibrational modes are recognized which are consistent with
previously reported Raman spectra on thin films of InSe.26,40

For the 10 nm thick InSe layer, the peaks at 113 and 223 cm−1

correspond to the nonpolar A1 mode and those at 176 and 193

cm−1 to the polar E and A2 (LO) modes, which are typical
modes for γ-InSe. For GaSe, the EDS and Raman spectra are
measured as well (Figure S3). The EDS analysis confirms that
the crystal is impurity-free, while the Raman spectrum shows
five prominent peaks at 57.3, 132.8, 211.5, 245, and 307.1
cm−1 which are characteristic Raman modes for pristine 2H-
GaSe.20,22,27,41,42

To demonstrate the effect of full hBN encapsulation on the
stability of InSe, we employed micro-PL measurements to
adjacent surfaces of exposed and protected InSe. Figure 3a,b

shows the PL spectra obtained for both samples at 297 and 4.2
K, respectively. It is evident that at both temperatures, hBN
encapsulation significantly enhances the PL spectra by yielding
narrower and more intense peaks as compared to the
unencapsulated InSe due to crystalline and atomically flat
layers of hBN. The prominent effect of hBN encapsulation is
seen at 4.2 K (Figure 3b), where the PL linewidth narrows
down to give a full width at half maximum (fwhm) of ∼12
meV in contrast to 36−38 meV obtained for the exposed InSe
of the same thickness. The reduction of the PL linewidth and
improved PL yield in the encapsulated sample indicates
fabrication of a high-quality hBN/InSe/hBN vdW hetero-
structure. As compared to the PL at 4.2 K, the linewidth of
both samples broadens at 297 K and shows a red shift (approx.
50 meV) from 1.30 (at 4.2 K) to ∼1.25 eV (at 297 K) as seen
in Figure 3a because of the interaction with acoustic and
optical phonons.43,44 Furthermore, the encapsulated InSe

Figure 2. (a) Schematic of the top view of few-layered InSe showing
the hexagonal lattice structure. (b) Side view of few-layered InSe
showing the ABC stacking pattern of the γ-phase InSe (red balls:
indium atoms, blue: selenium atoms). (c) EDS spectrum and
compositional analysis of the InSe bulk crystal confirming an
impurity-free crystal. (d) Raman spectra measured for various
thicknesses of InSe at room temperature.

Figure 3. PL spectra measured for encapsulated and unencapsulated
InSe, demonstrating high quality and ambient stability of fully hBN-
encapsulated InSe. PL spectra measured for both samples, (a) at 297
K, showing higher intensity PL peak, and (b) at 4.2 K, showing a
narrower linewidth with fwhm of 12 meV for encapsulated InSe. (c,d)
Evolution of the PL spectra with time for both encapsulated and
unencapsulated InSe at room temperature, respectively, stored under
ambient conditions. (e,f) Normalized PL peak intensity and PL peak
position measured over time, respectively, showing structural
instability of InSe when exposed to air, whereas the encapsulated
sample stays intact over 4 weeks.
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shows higher PL intensity, which further confirms the
suppression of surface charge traps and defects by using the
bottom hBN substrate.36,43 On measuring multiple stacks, a
mix of red and blue shifts in the PL peak position is obtained
when full hBN encapsulation is used (Figure S4). The
ambiguity in the shift direction is attributed to multilayered
structures of InSe and GaSe employed in this study. Unlike
monolayers of TMDCs where a reproducible red shift due to a
strong effect of hBN dielectric is observed,43−45 here, the effect
is much less pronounced. While the red shift can be attributed
to a stronger effect of the hBN dielectric, the blue shift may
arise because of various reasons, such as the presence of
shallow defect states, compositional fluctuations, and interface
inhomogeneities and/or as demonstrated in TMDCs, the
relative population of neutral and charged excitons.46−49 A
recent study shows that in multilayered InSe, hBN initiates
stronger charge confinement than SiO2, resulting in blue-
shifting of the optical band gap.50 Hence, the shift direction in
the multilayers of InSe and GaSe is governed by several factors
and cannot be associated only with the dielectric environment.
Nevertheless, the superiority of full hBN encapsulation is
evident in other PL features (intensity and fwhm). It is clearly
seen that the PL yield is maximized when 2D layers are
encapsulated in top and bottom hBN (Figures 3 and S4). A
statistical analysis of multiple stacks (Figure S4c) confirms an
overall narrowing down of the PL linewidth by 2−3 times
when 2D layers are encapsulated between top and bottom
hBN. These findings thus show that the best results are
obtained when the bottom hBN layer which protects the InSe
layers from the charge disorder at the SiO2 surface is used in
conjunction with top encapsulation which avoids exposure of
the top surface to air.49,51

The same samples are measured over time to test their long-
term stability under ambient conditions. Figure 3c,d reveals the
PL spectra measured at room temperature under normal
atmospheric conditions (see Methods for detailed PL
specifications) for a time period of 8 weeks. Between
consecutive measurements, both samples are stored in dark
under ambient conditions, allowing the ambient exposure to
affect both devices in the same manner. Figure 3e shows that
the PL peak intensity of the encapsulated InSe is intact for
almost 4 weeks, after which it starts to decline gradually,
whereas for the unencapsulated sample, the PL intensity has
almost vanished after 2 weeks. The PL peak position, however,
is not significantly affected over time (Figure 3f). Balakrishnan
et al.28 have attributed the reduction in the PL intensity to the
formation of In2O3 as InSe thin layers are exposed to air under
high temperatures and focused lasers. The trend in Figure 3
indicates that the stability of the InSe layers is greatly enhanced
by using hBN encapsulation which preserves InSe from the
complex physical and chemical changes occurring when it
comes in contact with air.
To investigate the quality of hBN encapsulated InSe FETs,

electrical performance of both encapsulated and unencapsu-
lated devices is measured in back-gate configuration. The
transfer curves of both devices (Figure 4a) show an n-type
FET behavior due to intrinsic doping of InSe layers as
predicted previously.2−4 The room-temperature two-terminal
field-effect mobility (μFE) is extracted using the following
equation:

I
V

L
WCV

d
d i

FE
DS

G DS
μ = ·

where L and W are the length and width of the channel, IDS
and VDS are source−drain current and voltage, VG is the back-
gate voltage, and Ci is the capacitance per unit area. Ci
estimated for the encapsulated device is 0.108 × 10−7 F/cm2

(full calculation provided in the Supporting Information). For
the 9.6 nm InSe-via-encapsulated device shown in Figure 1c,
the extracted μFE is 30 cm

2 V−1 s−1 with an on/off ratio of 104.
For other InSe-via devices with InSe thicknesses of 8−12 nm,
mobility ranging 30−120 cm2 V−1 s−1 is obtained (Figure S5).
In addition, the hBN-encapsulated device shows negligible
hysteresis in comparison to the unencapsulated device as well
as to previously reported devices using ALD and dry oxidation
as encapsulation, where substantial hysteresis was observed32,34

because of trapped charge carriers at the InSe−SiO2 inter-
face.2,36,52 Large hysteresis can give rise to further unreliability
issues, for example, extraction of field-effect mobility which in a
hysteric curve becomes strongly dependent on the gate sweep
direction.53 For this particular unencapsulated device, we
extracted a mobility of ∼0.47 cm2 V−1 s−1 (in forward sweep),
which is the lower limit of the mobility due to large hysteresis
(Figure S6b). On testing multiple unencapsulated devices, we
obtained large hysteresis in all devices, poor mobility values of
∼1 cm2 V−1 s−1, and on/off ratios of few hundreds. The output
curve of the encapsulated device (Figure 4b) reveals linear
characteristics indicating the formation of ohmic contacts
between the Pd/Au metal used in the via-contact and the
underlying InSe layer. However, we could not produce ohmic
and reliable contacts for unencapsulated InSe FETs as revealed
in Figure 4c, which might be due to degradation of InSe prior
to the metal deposition, leading to tunnel barriers at the

Figure 4. Electrical characterization of encapsulated InSe-via device
and unencapsulated InSe device shown in Figure 1c,e, respectively.
(a) Transfer characteristics (linear and semilog) of both devices at
VDS = 0.5 V measured in back-gate configuration. The small arrows
show the direction of the gate sweep. (b) Output characteristics of the
InSe-via-encapsulated device for back-gate voltages from +30 to +60
V with steps of 10 V, showing linear characteristics, indicating ohmic
behavior. (c) Output characteristics of the unencapsulated InSe
device measured at back-gate voltages from +30 to +60 V with steps
of 10 V, showing nonlinear behavior. Note that the current level in the
unencapsulated device is significantly lower than the encapsulated
device even in large VDS regimes.
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metal−InSe interface.5 The InSe channel area, in addition, is
continuously degrading due to air exposure. Thus, as evident
from our results, full hBN encapsulation is a reliable and
effective passivation technique for InSe and yields a stable
charge transport, greatly enhanced μFE and larger on/off ratio
as compared to the unencapsulated devices.
To investigate the long-term stability of InSe devices, the

samples were stored and measured in air for 15 days. The
transfer curve of the encapsulated device (Figure 5a) shows a

stable and consistent charge transport for over 2 weeks,
whereas the unencapsulated device has a large hysteresis and
low on-currents (Figure 5b). The large hysteresis and shift in
the threshold voltage of the unencapsulated InSe device are
attributed to the charge traps at the InSe−SiO2 interface and to
continuous adsorption/desorption of the gases because the
samples are stored and measured in air. For the encapsulated
sample, some changes in its transfer characteristics are
observed after few days, which might be due to small amounts
of moisture and gases getting trapped during the fabrication
process. To completely mitigate these issues, fabrication of the
devices can be carried out under stringent atmospheric
conditions, for example, using an argon-filled glovebox instead
of nitrogen. The evolution of the field-effect mobility and the
on/off ratio for both devices over time is shown in Figure 5c,d,
respectively. The unencapsulated device shows poor mobility
and low on/off ratio as compared to the encapsulated device
from the beginning and continues to deteriorate further with
time. (Note that the unencapsulated device was fabricated and
measured within a few hours from the time of exfoliation to
minimize the degradation). The performance of the encapsu-
lated device, on the other hand, stays intact throughout the
measured time period. This indicates that InSe is susceptible to
degradation in air and during standard process steps of device

fabrication. During the whole process, InSe layers come in
contact with various pre- and post-lithographic solvents, which
may induce structural damage, tunnel barriers, and pinning of
the Fermi level.38 The presence of tunnel barriers and Fermi
level pinning results in nonohmic contacts, low on-current, and
poor mobility as seen in Figure 4c for the unencapsulated
devices.34,54 Wei et al.31 have shown that adsorption of oxygen
atoms into the InSe structure causes serious hampering of the
electronic properties with mobility and other FET parameters
to decrease 2−3 orders in magnitude. Therefore, it is essential
to passivate InSe from air and at the same time from other
detrimental processes where its structural integrity can be
compromised. In this regard, the top and bottom hBN
encapsulation scheme is extremely useful as it protects InSe
from various forms of degradation and disorder and allows us
to study its intrinsic properties.
Subsequently, we integrated the full hBN encapsulation

technique into GaSe, another emerging 2D material belonging
to the same family as InSe but far more sensitive under
ambient conditions. The effectiveness of hBN encapsulation in
suppressing GaSe degradation is supported by low-temperature
PL measurements (Figure 6a,b) which show a significant

improvement in the spectra of the encapsulated GaSe as
compared to the unencapsulated layer. On measuring various
thicknesses of GaSe layers, we observed 10 times higher PL
peak intensity when it is encapsulated in top and bottom hBN,
whereas unencapsulated GaSe shows significant PL reduction
within 3 h from the time of exfoliation.
Because GaSe finds a majority of its applications in optics,

the large band gap of hBN (∼5.7 eV)55 is highly advantageous,
as it stays transparent for the wavelengths where GaSe is
optically active. The photoresponse obtained for the GaSe-via
device under global illumination by a blue laser (405 nm) at
various power settings is shown in Figure 6c,d. As the device is
illuminated by higher laser power, IDS increases monotonically

Figure 5. Transfer characteristics and FET parameters measured over
time to investigate the stability of via-encapsulated and unencapsu-
lated InSe devices. (a) Semilog transfer curve of via-encapsulated
device at VDS = 0.5 V measured over 15 days. The on- and off-currents
are highly reproducible with time indicating an ambient-stable device.
(b) Semilog transfer curve of the unencapsulated device measured
under same conditions as the encapsulated device. Large hysteresis
and unstable current demonstrates unreliable device characteristics.
Evolution of (c) mobility and (d) on/off ratio with time for both
device configurations. Both parameters are intact for the encapsulated
device, while the unencapsulated device degrades at a fast pace.

Figure 6. Optical characterization of fully encapsulated GaSe devices.
PL spectra measured at 4.2 K for GaSe layers (a) 21 nm thick and (b)
25 nm thick. Fully encapsulated GaSe shows intense PL peaks at ∼2.0
eV, while unencapsulated GaSe shows PL reduction due to fast
degradation. (c) Photoswitching response obtained for pulsed
illumination of 405 nm at VG = −80 V, VDS = 2 V, and various
laser power densities. (d) Photocurrent (red open squares) and
responsivity (blue open dots) as a function of incident power density
at VG = −80 V and VDS = 2 V. Red and blue straight lines are obtained
by fitting the measured data.
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because of the increased number of electron-hole pairs
generated. In response to pulsed illumination at 405 nm, the
device shows a photoswitching behavior and maintains long-
term stability of its photoresponse (Figure 6c). The rise in
current from off- to steady-state on light illumination occurs
within a 20 ms time interval, which is the resolution of the
measurement setup. We believe that the photoresponse time
should be less than 20 ms, which is comparable to the response
times of 10−20 ms reported previously with top gold
contacts.22,37 The photocurrent (IPH = Ilight − Idark) plotted
in Figure 6d increases with increasing incident power densities.
Responsivity, defined as the amount of the photocurrent
generated per unit incident illumination and calculated as the
ratio of the photocurrent density to the incident power density
(R = IPH/PA; P is incident power density; A is exposed device
area),56 is found to be decreasing as the incident power
increases. At an incident power density of 0.3 mW/cm2 (VG =
−80 V and VDS = 2 V), we achieved a responsivity of 84.2 A
W−1, which is a major improvement over top-encapsulated
GaSe photodetectors reported previously.21

■ CONCLUSIONS
The sensitivity of few-layered InSe and GaSe toward air,
bottom dielectrics, and lithography processes makes the
assessment of their intrinsic properties difficult. We demon-
strate that in order to obtain high-quality and stable devices,
their full encapsulation in hBN layers is extremely advanta-
geous as it protects the 2D layers from ambient degradation as
well as from the charge disorder at the SiO2 surface. The fully
encapsulated InSe and GaSe devices show greatly enhanced
and ambient-stable performance as compared to their
unencapsulated counterparts. hBN, because of its inertness,
atomically flat surface, and absence of charge traps, is an
optimal encapsulation for fabricating reliable InSe- and GaSe-
based devices. In the future, this technique can be applied to
other sensitive 2D materials which might then supersede
existing materials in terms of properties and performance.

■ METHODS
Bulk crystals of InSe (3R phase with a purity of 99.999%) and GaSe
(2H phase with a purity of 99.995%) are bought commercially from
2dSemiconductors and hqgraphene, respectively. The crystals are
mechanically exfoliated using the adhesive tape (model BT-130E-SL
bought from TELTEC GmBH) inside a nitrogen-filled glovebox and
stacked between top and bottom hBN using the “vdW transfer”
technique, described in detail in the Supporting Information. To
fabricate via-contacts, holes are etched into hBN flakes using reactive-
ion etching (Oxford RIE) with a gas mixture of SF6 and O2. The holes
are deposited with Pd: 20 nm/Au: 40 nm using an e-beam evaporator.
For lift-off process, the samples are dipped into acetone for at least 2 h
followed by rinsing in isopropanol and nitrogen blow drying. The
metal extensions to the hBN/InSe/via-hBN stack are fabricated by
using e-beam lithography under a poly(methyl methacrylate) e-beam
resist mask followed by metal deposition (Cr: 2 nm/Pd: 20 nm/Au:
40 nm) and standard lift-off process as described above. EDS is
carried out at 20 kV by means of a conventional Si(Li) detector with
the S-UTW window (Oxford Instruments) attached to a scanning
electron microscope. EDS spectra are obtained with the INCA
software by scanning a specimen area of about 3 × 5 μm2 for a
duration of 1 h and acquiring the data with an energy dispersion of 10
eV/channel in an energy range of 0−20 keV. Low-temperature micro-
PL measurements are carried out using a LHe cryostat system. The
excitation pump is a cw frequency-doubled Nd/YAG laser at a
wavelength of 532 nm. The power is 10 μW focused on a spot
diameter of 3 μm. The spectra are captured on a liquid nitrogen-

cooled silicon CCD deep-depletion camera after being dispersed in a
300 lines/mm grating spectrometer. Electrical measurements are
performed using a parameter analyzer (Agilent, 4155C) and
photoresponse using Lake Shore probe station (Model CPX-VF)
equipped with a cw blue laser diode at 405 nm wavelength. All
electrical and photocurrent measurements are carried out in air and at
room temperature.
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Widely tunable GaAs bandgap via strain
engineering in core/shell nanowires with large
lattice mismatch
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Arkady V. Krasheninnikov1, Harald Schneider 1, Manfred Helm1,2 & Emmanouil Dimakis 1

The realisation of photonic devices for different energy ranges demands materials with dif-

ferent bandgaps, sometimes even within the same device. The optimal solution in terms of

integration, device performance and device economics would be a simple material system

with widely tunable bandgap and compatible with the mainstream silicon technology. Here,

we show that gallium arsenide nanowires grown epitaxially on silicon substrates exhibit a

sizeable reduction of their bandgap by up to 40% when overgrown with lattice-mismatched

indium gallium arsenide or indium aluminium arsenide shells. Specifically, we demonstrate

that the gallium arsenide core sustains unusually large tensile strain with hydrostatic char-

acter and its magnitude can be engineered via the composition and the thickness of the shell.

The resulted bandgap reduction renders gallium arsenide nanowires suitable for photonic

devices across the near-infrared range, including telecom photonics at 1.3 and potentially

1.55 μm, with the additional possibility of monolithic integration in silicon-CMOS chips.
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III-V compound semiconductors have stimulated many
breakthroughs in physics and technology owing to their direct
bandgap and high electron mobility1. It has also been very

important that these fundamental properties can be tailored,
depending on the targeted device application or operation
energy-range, by using (qua-) ternary alloys with selected che-
mical compositions. InxGa1−xAs is a representative example for
applications in the near-infrared range, where the In-content x
can be chosen to provide appropriate bandgaps for multi-junction
photovoltaics, light emitting diodes and photodiodes, or telecom
photonics2,3. Nevertheless, not all compositions and corre-
sponding bandgaps between the two endpoint binaries of a
ternary alloy (e.g. GaAs and InAs for InxGa1−xAs) are feasible
because of the unavailability of lattice-matched substrates as well
as the spinodal decomposition4. Furthermore, the alloy disorder
is another factor that affects the performance of ternary alloys5,6.

More recently, III–V semiconductors in the form of free-
standing nanowires have shown new potentials for a wide range
of future applications in nanotechnology, e.g., photovoltaic cells
with enhanced light absorption7, lasers with sub-wavelength size8,
tunnel field-effect transistors as energy-efficient electronic
switches9, and entangled photon-pair sources for quantum
information technology10. Owing to their small footprint, nano-
wires can also be grown epitaxially without dislocations on
lattice-mismatched substrates, enabling the monolithic integra-
tion of dissimilar materials with complementary properties, such
as III–V semiconductors and Si11–14 or graphene15,16. A distinct
feature of the nanowire geometry is the possibility to create core/
shell heterostructures of highly lattice-mismatched materials well
beyond the limits for coherent growth in equivalent thin-film
heterostructures17. The lattice mismatch can be accommodated
via elastic deformation of not only the shell, but also the core,
depending on the relative thicknesses and chemical composi-
tions18. This increases the capabilities for engineering the strain
and, thus, the electronic structure and properties of the hetero-
structure19–23. Unlike quantum-dot heterostructures, where
elastic accommodation of large misfit stresses is also possible24,
the hetero-interface in nanowires can be several micrometres
long, allowing for practical use in a wide variety of device con-
cepts, e.g., in photovoltaics, lasers, thermoelectrics and
electronics25.

Strain-induced changes in the bandgap of the core in
core/shell nanowires have been reported for GaAs/GaP26,
GaAs/AlxGa1−xAs27, InAs/InAsxP1−x

22, and GaN/AlxGa1−xN20.
In all cases, the core was compressively strained and its bandgap
increased, in the most extreme case by 260 meV26. Tensile strain
and up to 150 meV smaller bandgap in the core have been
reported only for GaAs/GaxIn1−xP nanowires28. Nevertheless,
extending the same concept to higher strain values is not
straightforward owing to limiting factors like plastic relaxation
and/or morphological instabilities29–32. Alternatively, quantum
confinement in thin nanowires33 or post-growth external
stress34,35, which is less practical though for device applications,
have also been suggested for tuning the GaAs bandgap.
Here, we exploit the unique opportunities for strain engi-

neering in nanowires to achieve wide tuning of the bandgap in
GaAs, a traditional III–V binary alloy. Specifically, we investigate
the strain in highly-mismatched GaAs/InxGa1−xAs and
GaAs/InxAl1−xAs core/shell nanowires, and its effects on the
electronic properties of the GaAs core. The nanowires are grown
epitaxially on Si substrates. Our work shows how to surmount
strain-induced difficulties in the growth, how the misfit strain is
distributed between the core and the shell depending on the
design of the heterostructure and, most important, how to obtain
highly strained cores with a sizeable change in their bandgap.
After all, we demonstrate the possibility to reduce the bandgap of

GaAs by up to 40% (≈600meV) in a continuous manner
(all intermediate values are possible), which renders GaAs
nanowires a versatile material system for various photonic devices
in the near-infrared range, including the 1.3 μm and potentially
the 1.55 μm telecom windows, monolithically integrated on the
same Si chip.

Results
Growth of strained core/shell nanowires. Vertical GaAs/InxGa1
−xAs and GaAs/InxAl1−xAs core/shell nanowires were grown on
Si(111) substrates by molecular beam epitaxy (MBE). First, GaAs
core nanowires with a diameter of 20–25 nm and a length of 2 μm
were grown in self-catalysed mode36 and then InxGa1−xAs or
InxAl1−xAs shells were grown around the core nanowires (see
Methods). The shell thickness (LS) and composition (x) were
varied independently according to the needs of our study. Fig-
ure 1a, b depict side-view scanning electron microscopy (SEM)
images of bare GaAs core nanowires (without shell) and GaAs/
InxGa1−xAs core/shell nanowires (x= 0.20, LS= 40 nm), respec-
tively. The growth conditions for the shell were tuned to obtain a
homogeneous thickness and composition around the core
nanowires. Specifically, the growth of the shell was performed at a
considerably low substrate temperature (370 °C) with a con-
tinuous substrate-rotation of 20 rpm and relatively high growth
rates (≈ 0.6 Å/s). Apart from the nanowires, a continuous planar
layer with polycrystalline structure and similar composition to
that of the nanowire shells also grew on the substrate.
The structure and composition of the nanowires were

evaluated with transmission electron microscopy (TEM). The
nanowires grew along the ½�1�1�1� crystallographic direction and
have six 1�10f g sidewalls. Figure 1c, d show element maps along
and perpendicular to the nanowire axis as measured with energy-
dispersive X-ray spectroscopy (EDXS; see Methods). The
incorporation of In into the shell was found very homogeneous
except for the nanowire corners (Fig. 1d), where the incorpora-
tion was reduced, giving rise to six <11�2> lines of lower x (the
same occurs in InxAl1−xAs shells). Similar phenomena have been
observed by others in various material systems and have been
attributed to self-ordering effects that occur during heteroepitaxy
on nonplanar substrates37. The shell adopted the crystal structure
of the core (see Supplementary Fig. 1 and Supplementary Note 1),
i.e., both the core and the shell grew in the zinc blende structure
and only the two ends of the nanowires contain a high number of
rotational twins around the 111½ � nanowire axis and stacking
faults that were formed in the beginning and the end of the GaAs
growth (owing to transient changes of the droplet contact angle).
Small wurtzite segments (i.e. continuous formation of twins)
could be found by high-resolution TEM only occasionally and
only at the two ends of the nanowires, but their volume was
negligible compared to the total volume of the nanowires. Finally,
the coherent growth along the h11�2i crystallographic directions of
the core/shell interface was evidenced by the absence of misfit
dislocations as shown in Fig. 1e (high-resolution TEM image of
the region shown with the yellow square in Fig. 1d).

We obtained similar results also for InxGa1−xAs shells with
higher x and larger LS or for InxAl1−xAs shells. For example,
cross-sectional EDXS element maps for In0.45Ga0.55As and
In0.49Al0.51As shells (LS= 80 nm) are shown in Fig. 1f, g,
respectively. The absence of misfit dislocations at the core/shell
interface across the whole nanowire length was confirmed with
TEM weak-beam dark-field measurements using the 220
reflection and the so-called (g, 3 g) condition. The example of a
GaAs/In0.49Al0.51As nanowire, of the same type like the one in
Fig. 1g, is shown in Fig. 1h. Finally, we found that the highest
possible x for coherent growth of GaAs/InxGa1−xAs nanowires
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with LS= 80 nm resides between 0.55 (no misfit dislocations were
observed) and 0.70 (misfit dislocations were observed).

It is worth to mention that we identified a tendency for
preferential growth of the shells with high x on one side of the
core, similar to Day et al.38 for highly strained Si/Ge core/shell
nanowires. This effect imposed anisotropic misfit stress to the
core and, thus, the nanowires bent towards the thinner shell
side21,30,38,39. However, it was possible to minimise this tendency
by performing the shell growth at sufficiently low tempera-
tures with high growth rates, which imposed strong kinetic
limitations. In contrast, the nanowires were bent permanently at
higher growth temperatures and lower growth rates, even for x as
low as 0.20.

Analysis of strain in core/shell nanowires. The strain in core/
shell nanowires was measured by micro-Raman scattering spec-
troscopy at 300 K (λ= 532 nm, beam spot size= 800 nm). The
measurements were performed in back-scattering configuration
with normal incidence excitation on single nanowires (see
Methods), which had been transferred previously on an Au-
coated Si wafer. The removal of nanowires from their original
substrate did not affect their strain state because of the small
nanowire/substrate interface area (see Supplementary Fig. 2d and

Supplementary Note 2). An example of a GaAs/InxGa1−xAs core/
shell nanowire with x= 0.20 and LS= 40 nm is shown in Fig. 2a
in comparison with a bare GaAs nanowire (without shell). The
spectrum of the bare GaAs nanowire is dominated by scattering
from transverse optical (TO) phonons, with the peak position at
268.6 cm−1 in good agreement with reported values for strain-
free bulk GaAs in zinc blende phase40,41 (longitudinal optical
(LO) phonon transitions are forbidden in the particular mea-
surement geometry, but a weak signal is still present). In contrast,
the spectrum of the core/shell nanowire shows a more complex
structure. Using Lorentzian curves for the fitting of the line shape,
we identified three scattering contributions, i.e. scattering in the
core from GaAs TO phonons and scattering in the shell from
GaAs-like and InAs-like TO phonons (see Methods). Measuring
the relative peak shift (Δω/ω) with respect to the strain-free
position for GaAs and GaAs-like TO phonons (268.6 cm−1 and
268.6–30·x cm−1, respectively42,43), we deduced the amount of
hydrostatic strain ΔV/V in the core and in the shell, respectively,
using the following equation:

ΔV=V ¼ 1=γTO � Δω=ω; ð1Þ
where γTO= 1.39 is the hydrostatic deformation potential (or
Grüneisen parameter) of GaAs TO phonons40. Here, the shift of
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Fig. 1 Morphological, compositional and structural analysis of GaAs/InxGa1−xAs and GaAs/InxAl1−xAs core/shell nanowires grown on Si(111) substrates.
a Side-view scanning electron microscopy (SEM) image of as-grown bare GaAs core nanowires and (b) GaAs/InxGa1−xAs core/shell nanowires (x=
0.20, shell thickness LS= 40 nm). c Energy-dispersive X-ray spectroscopy (EDXS) compositional analysis of the shell along the axis of one nanowire from
the sample shown in (b). The zero position corresponds to the tip of the nanowire. The inset depicts the corresponding compositional map. d EDXS
compositional map perpendicular to the axis of one nanowire from the sample shown in (b). e High-resolution transmission electron microscopy (TEM)
micrograph of the core/shell interface region shown in (d) with a yellow square. The dotted line indicates the core/shell interface. The 1�10½ �, 11�2
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crystallographic directions are indicated as x-, y- and z- axes, respectively. f EDXS compositional map perpendicular to the axis of a GaAs/InxGa1−xAs core/
shell nanowire with x= 0.45 and LS= 80 nm. g EDXS compositional map perpendicular to the axis of a GaAs/InxAl1−xAs core/shell nanowire with x=
0.49 and LS= 80 nm. h (220) weak-beam dark-field TEM image of a GaAs/InxAl1−xAs nanowire like in (g) that shows no misfit dislocations in the region
of the core (between the yellow dotted lines). The scale bars correspond to 1 μm in (a, b), 30 nm in (d, f, g), 5 nm in (e), and 100 nm in (h)
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GaAs TO phonons has been attributed exclusively to strain,
neglecting any other potential contributions (e.g., phonon con-
finement or zone-folding)44,45. This means that our ΔV/V values
for the GaAs core correspond to the highest possible strain. Given
the large size of the laser beam compared to the nanowire length,
the potential existence of alloy disorder in the shell (below the
resolution of our EDXS analysis) or any other type of local
structural disorder is expected to affect the width of the phonon
lines rather than their peak positions.
Figure 2b, c summarise the measured Raman shifts and the

corresponding strain, respectively, in GaAs/InxGa1−xAs core/shell
nanowires as a function of LS for x= 0.20 (see all Raman spectra
in Supplementary Fig. 3a). For the smallest LS, both the shell and
the core are strained, i.e., the shell is compressively strained,
whereas the core is tensile-strained. With increasing LS, though,
the shell becomes less strained and the core more strained. In
other words, the compressive misfit strain that exists in thin shells
is elastically relaxed with increasing LS by stretching the core
(later we will show that this is not the only mechanism of strain
relaxation in the shell). Eventually, for LS ≥ 40 nm the shell
becomes almost strain-free, whereas the strain in the core
saturates at 3.2%. These results already show that thin enough
nanowires can be used as flexible substrates for overgrowth with
lattice-mismatched shells, going far beyond what is possible in
equivalent thin-film heterostructures46.
The strain state of the GaAs core and the In0.20Ga0.80As shell

was verified using high-resolution X-ray diffraction (XRD) at
synchrotron light sources. The lattice parameters of the core and
the shell were measured along the three orthogonal crystal-
lographic directions x, y, z defined in Fig. 1e (z-axis is parallel to
the nanowire axis, whereas x- and y- axes are perpendicular to it).
For this purpose, three-dimensional reciprocal space maps were

recorded for nanowire ensembles around the 20�2, 22�4 and �1�1�1
Bragg reflections, respectively (see Methods). As an example, the
reciprocal space map around the 22�4 reflection, projected on the
ðQ½11�2�; Q½1�10�Þ plane, for nanowires with LS= 10 nm is depicted
in Fig. 3a. The contributions from the core and the shell are
indicated with dashed rectangles. The corresponding 1D plot
along Q½11�2�, after integration of the intensity along Q½1�10�, is also
shown in Fig. 3a. The comparison of the 1D plot (continuous
curve) with simulations (dashed curve) based on elasticity theory
(see Methods) shows a reasonable agreement. Measurements and
simulations were also performed on nanowires with LS= 0, 5, 40,
and 80 nm (see Supplementary Fig. 5). The diffraction signal from
the core was strong enough and, thus, could be unambiguously
identified only for LS= 0, 5, and 10 nm. On the other hand, the
complexity of the radial strain profile in thin shells (see
Supplementary Fig. 6) allowed for extracting single lattice
parameters for the shell along x or y direction only for LS= 40
and 80 nm. The extracted average lattice parameters of the core
(αcx, α

c
y, α

c
z) and the shell (αsx, α

s
y, α

s
z) are plotted in Fig. 3b as a

function of LS.
The fact that all three lattice parameters of the core increased

with LS is a manifestation of the hydrostatic character of strain in
the core. αcz, which was found equal to αsz, increased gradually
with LS from the value of strain-free GaAs to that of strain-free
In0.20Ga0.80As. This means that for thick enough shells, the misfit
along the nanowire axis was elastically accommodated exclusively
by stretching the core. The situation is not the same in the x–y
plane. αcx and αcy also increased with LS, but they showed a
tendency to saturate well below the value of strain-free
In0.20Ga0.80As. Nevertheless, αsx and αsy reached almost strain-
free values, which suggests that the misfit perpendicular to the
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arrows indicate the strain-induced shift of the various transverse optical (TO) phonons. b Raman shift of the GaAs (blue data points) and the GaAs-like
(red data points) TO phonons as a function of LS. The dashed lines are guides to the eye, whereas the horizontal dotted lines show the expected Raman
shift of GaAs and GaAs-like TO phonons in strain-free GaAs and strain-free In0.20Ga0.80As, respectively. The error bars represent the standard deviation
and the instrument error. c The hydrostatic strain in the core (blue data points) and the shell (red data points) as a function of LS. The dashed lines are
guides to the eye. The error bars originate from the error bars in Raman shift. The star symbols correspond to X-ray diffraction (XRD) results
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nanowire axis was only partly accommodated by stretching the
core. We speculate that the reason for that is the continuously
increasing width of the nanowire sidewalls during shell growth,
which also enables the elastic accommodation of misfit.
The strain components along (εzz) and perpendicular (εxx, εyy)

to the nanowire axis were calculated for the GaAs core as εn ¼
αcn � α0
� �

=α0 (where n ¼ xx; yy; zz, and α0= 5.6533 Å is the
lattice parameter of strain-free GaAs), whereas the corresponding
hydrostatic strain was calculated as ΔV=V ¼ εxx þ εyy þ εzz. As
shown in Fig. 2c, the results for ΔV/V (star symbols) are in good
agreement with the strain measured by Raman scattering. Thus, it
is two independent experimental techniques that verify the
unusually large strain in the GaAs core.
The amount of tensile strain in the GaAs core depends also

on the core/shell misfit f (relative difference in lattice constants)
or, in other words, the shell composition x. Figure 4a summarises
the Raman shift and Fig. 4b the corresponding strain in
GaAs/InxGa1−xAs core/shell nanowires with different values of
x, from 0.10 to 0.55 (the nominal values of x were confirmed for a
selected number of samples by EDXS analysis in the TEM), and
LS= 40–80 nm (see all Raman spectra in Supplementary Fig. 3b).
The tensile strain in the core was found to increase linearly with x
(i.e. ΔV/V= 1.7 f), whereas the shell remained approximately
strain-free. The tensile strain in the core was also measured for
GaAs/InxAl1−xAs nanowires with different x and LS= 80 nm (see
all Raman spectra in Supplementary Fig. 4). The results (open
symbols in Fig. 4; ΔV/V= 1.8 f) are similar to those for GaAs/
InxGa1−xAs nanowires because of the similar lattice parameters of
InxGa1−xAs and InxAl1−xAs for the same x. Assuming εzz � f ,
we estimate that the strain in the core is 2.5 times larger
along the nanowire axis than perpendicular to it (i.e.
εzz ¼ 2:5 εxx ¼ 2:5 εyy).

For the highest misfit in this work, i.e. f= 4% for In0.55Ga0.45As
or In0.54Al0.46As shells, the tensile hydrostatic strain in the core
reached the remarkably large value of 7%. The linear increase of
strain in the core with x suggests that no apparent plastic
relaxation occurred, in accordance with our TEM analysis. These
results are in agreement with theoretical predictions of growth
coherency in core/shell nanowires with f up to 4% and core radii
of about 10 nm or less47. We point out that it would have
been impossible to grow such highly lattice-mismatched

heterostructures in conventional thin-film geometry without
forming dislocations.

Effect of strain on the electronic properties of the GaAs core.
The effect of strain on the bandgap of the GaAs core was stu-
died by means of photoluminescence (PL) spectroscopy. The
existence of tensile strain with hydrostatic character in the core
is expected to reduce the bandgap. In fact, the bandgaps of the
tensile-strained GaAs core and the strain-free InxGa1−xAs shell
are expected to be similar1,48, which makes their distinction in
optical spectra difficult. To avoid any ambiguities, we used
GaAs/InxAl1−xAs core/shell nanowires, where the larger
bandgap of strain-free InxAl1−xAs (larger than 1.38 eV at 12 K
for x ≤ 0.54) cannot be confused with that of the tensile-
strained GaAs. PL measurements were performed at 12
and 300 K (laser excitation at 532 nm) on ensembles of GaAs/
InxAl1−xAs nanowires, which had been transferred previously
on amorphized Ge wafers (to quench the photoluminescence
from crystalline Ge). The spectra for different values of x (LS=
80 nm) are plotted in Fig. 5a. Emission was obtained only in the
0.8–1.2 eV range, which is suggestive of radiative recombina-
tion of electron-hole pairs only inside the tensile-strained GaAs
core. The emission shifts to lower energies with increasing x, in
agreement with the expected effect of increasing tensile strain in
the core.
The energy of the emission peak (E1) at 12 K is plotted in

Fig. 5b as a function of the hydrostatic strain (ΔV/V) in the core
and the corresponding In-content x in the shell. The linear
dependence was fitted (blue dashed line) with an equation of the
form:

E1 ¼ E0 þ a � ΔV
V

; ð2Þ

where E0 is the strain-free value of E1 and a is the hydrostatic
deformation potential of E1. The fitting parameters (E0= 1.55 ±
0.03 eV and a=−9.0 ± 0.5 eV) are in good agreement with the
strain-free bandgap energy (1.52 eV) and the hydrostatic
deformation potential (−8.5 eV) of bulk GaAs1,49,50. Thus, E1
can be attributed to band-edge transitions in the tensile-strained
GaAs core.
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Our results are compared in Fig. 5b with the bandgap
of strained GaAs calculated either from first-principles
(a combination of density-functional theory, DFT, with GW
approximation; black dash-dotted line) or with the band-edge
deformation potential (DP) theory (black short-dashed line)49,51.
The theoretical bandgap here is defined as the energy difference
between the electron conduction band minimum and the heavy-
hole valence band maximum at the Γ-point of the Brillouin zone
(the heavy-hole/light-hole degeneracy of the valence band is lifted
owing to the strain anisotropy; see Methods). The agreement
between experiment and theory is reasonably good, whereas the
energy offset of 40 meV between PL and DP in Fig. 5b could be
attributed to quantum confinement owing to the small diameter
of the GaAs core. The heavy-hole character of the valence band
was also tested with polarisation-resolved PL measurements on

oriented nanowires. The polar graph in Fig. 5c shows that E1 is
polarised perpendicular to the nanowire axis, as expected for
recombination of electrons with heavy holes52.

An empirical relation that describes the change of GaAs
bandgap (ΔEg) at 12 K as a function of x is extracted from the
linear dependence of E1 on x in Fig. 5b:

ΔEg ¼ �1:124 ± 0:008ð Þ x eV ð3Þ
We emphasise that the bandgap of GaAs at 12 K was reduced

from the strain-free value of 1.52 eV to 0.91 eV for the highest
strain (obtained for x= 0.54), i.e. a striking reduction by 40%.
The same behaviour was observed at 300 K, where the bandgap
energy of strained GaAs (indicated with blue arrows in Fig. 5a)
was reduced to 0.87 eV with increasing x to 0.54. This is
particularly important for applications in optical fibre telecom-
munications because the emission from strained GaAs nanowires
can now cover the 1.3 μm (O-band) and potentially the 1.55 μm
(C-band) of telecommunication wavelengths. This is better
illustrated in Fig. 6a, where our results (blue data points) are
also compared to the bandgap of strain-free ternary alloys1

(continuous curves). Although our experiments and discussion
are focusing on the narrowest achievable bandgap for GaAs, all
intermediate values should also be feasible by using shells with
lower LS and/or lower x.

A secondary PL peak (E2) was observed at 300 K (indicated
with black arrows in Fig. 5a), ~40–50 meV higher in energy
compared to E1. Its origin is unclear, but could be associated
either with the complex radial profile of strain inside the core,
which leads to complex localisation patterns of carriers53, or with
unintentional composition/strain inhomogeneity. We also note
that E2 appears even at 12 K if optical excitation power is high
enough.
The reduction of the bandgap of GaAs with increasing tensile

strain should be accompanied by a reduction of the effective mass
of electrons at the Γ-point of the Brillouin zone. If we assume that
the strain in GaAs is purely hydrostatic, the corresponding
effective mass of electrons (m�

e ) can be estimated using the
following pressure coefficients48:

dEg
dP

¼ 12:02 eV=Mbar ð4Þ

1
m�

e

dm�
e

dP
¼ 6:8Mbar�1; ð5Þ

where dEg is the change of the bandgap energy induced by a
relative pressure dP. In our case, m�

e in GaAs core is expected to
decrease with increasing x in the shell, reaching a value of
m�

e=0.0448m0 at 300 K for the highest x here. This is
equivalent to a reduction by ~30% from the strain-free value of
0.065 m0. In fact, this lowest value of m�

e is comparable to that for
bulk InxGa1−xAs in the range of x= 0.531 that is typically used in
high electron mobility transistors (HEMTs) on lattice-matched
InP substrates (Fig. 6b). This means that high-frequency
photonics as well as high-mobility transistors could now be
possible with strained GaAs nanowires and without the need for
lattice-matched substrates.

Discussion
Our results show that the GaAs core in GaAs/InxGa1−xAs or
GaAs/InxAl1−xAs core/shell nanowires can sustain unusually
large misfit strains that would have been impossible in equivalent
thin-film heterostructures. The strain of GaAs is tensile, can be
engineered via the shell thickness and composition, and exhibits a
predominantly hydrostatic character that is similar only to
quantum-dot heterostructures. As a result, the electronic
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properties of GaAs can be widely tuned as if we had changed its
chemical composition by adding In, but without the limitations of
ternary alloys. InxGa1−xAs or InxAl1−xAs shells are still necessary
in order to regulate the strain in the GaAs core, but phenomena
like phase separation or alloy disorder, which typically exist in
ternary alloys and limit the device performance, become less

critical. For the highest strain in this work, the bandgap of GaAs
is reduced by 40%, making it possible to reach the 1.3 μm and
potentially the 1.55 μm telecom wavelengths. A corresponding
reduction of the electron effective mass by 30% is also expected.
Extrapolation of our results suggests that tuning of the bandgap
towards the visible range should also be possible using this time
compressively strained GaAs nanowires, e.g., with GaAsxN1-x or
BxGa1-xAs shells54,55. Furthermore, we anticipate that the afore-
mentioned concepts can also be adopted for other III–V binary/
ternary material systems. All in all, our findings open up new
possibilities for monolithically integrated III-V photonics (as well
as electronics) in Si-CMOS circuits. With an advanced method of
position-controlled growth, different devices (lasers, photodiodes,
photovoltaic cells, etc.) could be made of the same material sys-
tem on the same Si chip. The use of the same material for all
devices would ensure process compatibility (e.g. no issues with
cross-contamination, different processing temperatures or dif-
ferent thermal budget limits) and minimisation of the
fabrication costs.

Methods
Growth of core/shell nanowires. All nanowire samples were grown by solid-
source MBE. Si(111) substrates covered with a native oxide layer were subjected
to an in situ surface modification process with Ga droplets to create nano-
sized holes in the oxide layer for the subsequent nucleation of GaAs nanowires
directly on Si36. The GaAs core nanowires were grown for 10min at a substrate
temperature of 615 °C using Ga and As4 beam fluxes equal to 6 × 1013 cm−2 s−1

and 2 × 1015 cm−2 s−1, respectively. The core growth was interrupted by closing the
Ga shutter and the substrate temperature was ramped down to 370 °C under
continuous exposure to the As beam. During that stage, the Ga droplets at the
nanowire tips were converted to GaAs56. The shell growth was performed at 370 °C
using In and Ga or Al beams with a total flux of 5 × 1014 cm−2 s−1 and an As4 or
As2 beam flux of 4–5 × 1015 cm−2 s−1. The shell In-content x was controlled via the
ratio of In and Ga or Al fluxes, whereas the shell thickness was controlled via
the shell growth duration. The InxAl1−xAs shells were capped with a 5-nm-thick
InxGa1−xAs shell to avoid oxidation of the Al-containing shells in air.

Chemical analysis. Chemical analysis based on EDXS was performed in scanning
TEM mode. In particular, spectrum imaging analysis based on EDXS was used to
obtain the element distributions along or perpendicular to the axis of single
nanowires. Figure 1c, d, f, g show two-dimensional element distributions. Quan-
tification of the recorded element maps including Bremsstrahlung background
correction based on the physical TEM model, series fit peak deconvolution, and
application of tabulated theoretical Cliff-Lorimer factors as well as absorption
correction was done for the elements In (Lα line), Ga (Kα line), and As (Kα line)
using the ESPRIT software version 1.9 (Bruker). The line scan plotted in Fig. 1c
shows the chemical composition of the shell along the nanowire axis. The data have
been extracted from the complete two-dimensional element map shown in the inset
by selecting the data along a line (line width= 10 nm) parallel to the nanowire axis
and in a distance of ~20 nm from the nanowire core (to exclude any contribution

Fig. 5 Effect of strain on the bandgap energy of the core in GaAs/InxAl1−xAs
core/shell nanowires with shell thickness LS= 80 nm. a Photoluminescence
(PL) spectra as measured on ensembles of nanowires with different x at 12
and 300 K. The spectra have been shifted vertically for the sake of clarity.
Fit curves (Voigt) are shown in green (contributing peaks) and red
(cumulative curves). Primary (E1) and secondary (E2) emissions are
indicated with blue and black arrows, respectively. b E1 peak energy at 12 K
(blue data points) as a function of the hydrostatic strain in the core (bottom
x-axis) and the corresponding In-content x in the shell (top x-axis). The
energy error bars correspond to the full-width at half-maximum of the PL fit
curves, whereas the strain error bars originate from the error bars in Raman
scattering measurements. The blue dashed line is a linear fit of the PL data.
The black lines correspond to the bandgap energy of bulk GaAs as a
function of strain, calculated with deformation potential theory (DP; dashed
line) or from first-principles (GW; dash-dotted line). c Integrated intensity
of the E1 peak in polarisation-resolved PL at 300 K. The polarisation of the
excitation light was parallel to the nanowire axis (0° and 180°)
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from the core). For the statistical confirmation of the results, we performed mul-
tiple line scans within the shell of the same or different nanowires.

Raman scattering spectroscopy. Micro-Raman scattering measurements were
performed using a frequency-doubled Nd:YAG laser with λ= 532 nm and 0.08
mW (the laser spot size was approximately 800 nm). Nanowires were transferred
from the original substrate onto an Au-coated Si wafer. Single nanowires lying on
their 1�10f g sidewall were selected and measured using an objective lens ×100 in
back scattering and normal incidence configuration. The nanowire axis was
oriented parallel to the linear polarisation of the laser, whereas the measurement
was polarisation-unresolved. Different polarisation configurations were also tested
and found to be in agreement with the selection rules for zinc blende nanowires41

(see Supplementary Fig. 2b and Supplementary Note 2). Furthermore, no signal
related to wurtzite phase could be detected within the resolution of our setup (see
also Supplementary Fig. 2c and Supplementary Note 2). The identification of the
GaAs TO phonon peak in a Raman spectrum of a GaAs/InxAl1−xAs nanowire is
simple because no other peaks exist in the same range of wavenumbers (see
Supplementary Fig. 4). In contrast, the close proximity of GaAs and GaAs-like TO
phonons in GaAs/InxGa1−xAs nanowires (as shown in Fig. 2a) makes their dis-
tinction difficult. To overcome this problem, we used the peak position of GaAs TO
phonon in GaAs/InxAl1−xAs nanowires as a reference for the identification of the
corresponding peak in GaAs/InxGa1−xAs nanowires with the same In-content x (a
similar peak position is expected). This methodology was eventually validated via
the successful comparison to XRD and PL results (Figs. 2c and 5b). Raman spectra
from GaAs/InxAl1−xAs nanowires also showed the existence of only one peak for
GaAs TO phonons within the resolution of our scans. This means that the triple
degeneracy of TO phonons was not clearly lifted, which is in agreement with the
predominantly hydrostatic character of the strain inside the GaAs core. The peak
fitting was performed with Lorentzian profiles. The error bars in Raman shift
measurements (Figs. 2b and 4a) represent the standard deviation of measurements
on several nanowires from the same sample (≈0.5 cm−1) and the instrument error
(≈1.0 cm−1).

Photoluminescence spectroscopy. Photoluminescence measurements were per-
formed with a frequency-doubled Nd:YAG laser with λ= 532 nm and a liquid-
nitrogen-cooled InGaAs detector with a response up to 1.5 μm. The excitation
power was 10 mW at 12 K (to avoid heating effects) and 20 mW at 300 K for all
samples in Fig. 5a (the laser spot size was ~1 mm). Nanowires were transferred
from the original substrate onto a Ge wafer, which was previously implanted with
Ge-ions to quench its luminescence. The measurements were performed on
ensembles of a few hundreds of nanowires at various temperatures using a closed-
cycle He-cryostat. Due to technical restrictions of the setup, it was not possible to
perform the measurements at 12 K and 300 K at exactly the same position on the
sample. Thus, the number of probed nanowires was probably different for the two
temperatures. The peak fitting was performed with Voigt profiles and the full-
width at half-maximum (FWHM) is shown as error bars in Fig. 5b. For
polarisation-resolved measurements, a λ/2 plate and a polarizer were placed in the
light path before and after the sample, respectively.

High-resolution X-ray diffraction. The high-resolution X-ray diffraction char-
acterisation was carried out at beamline P08, at the PETRA III synchrotron in
Hamburg (Germany), and at beamline I07, at the Diamond Light Source in Didcot
(United Kingdom). The out-of-plane symmetric reflection �1�1�1 and the asymmetric
reflections �3�3�1, �4�2�2 (cubic) and �101�5 (hexagonal) were measured in coplanar
geometry at beamline P08. Here, a set of Be focusing lenses (two lenses with 0.2
mm radius), 33 m upstream from the sample, was used to define a beam size of 200
μm (vertical) × 300 μm (horizontal) at an energy of 10 keV. A two-dimensional
detector Pilatus 300 K was used to collect full 3D reciprocal space maps of the
signals under investigation. The in-plane 20�2 and 22�4 reflections (about 30° apart
from each other) were measured in non-coplanar grazing incidence X-ray geo-
metry at beamline I07. Here an incident angle of 0.2° was chosen close to the
critical angle of total external reflection. According to the penetration depth profile
of X-rays for the material under investigation, this choice ensures a depth sensi-
tivity of only a few nanometres below the surface, and reduces significantly the
diffracted contribution from the growth substrate. Also for those measurements, an
X-ray beam with energy of 9 keV was similarly focused to hundreds of μm size. We
optimised these parameters to be able to separate the different contributions of the
core and shell in the diffraction patterns. However, the final beam size in the
vertical direction corresponded to the large footprint of the X-ray beam impinging
on the substrate surface, a footprint which was several mm long. Therefore, due to
the given experimental conditions, the in-plane reflections show a different reso-
lution in reciprocal space, which is mainly influenced by the illuminated sample
area. Furthermore, a small thickness fluctuation of the nanowire affects much more
strongly the in-plane 20�2 than the in-plane 22�4 reflections. 3D reciprocal space
maps were collected using a 100 K Pilatus detector. For all samples, a constant He
flux was blown around the sample within a Kapton® dome to limit possible
radiation damage.

The three components of the wave vector transfer are defined as: Q �1�1�1½ � out-of-
plane component parallel to the surface normal; Q 1�10½ � and Q 11�2½ � perpendicular in-
plane components. For all Bragg signals originating from the nanowires, the
corresponding signal from the Si substrate was collected and it constitutes the
reference of our measurements. As a last qualitative evaluation, the polytype
sensitive reflections �3�3�1, �4�2�2 and �101�5, sensitive to zinc blende, twinned zinc
blende and wurtzite, respectively, reveal twinning together with an insignificant
presence of the wurtzite polytype.

2D reciprocal space maps were calculated by integrating the 3D maps along
Q 11�2½ � for the out-of-plane �1�1�1 reflection or along Q �1�1�1½ � for the in-plane 20�2 and
22�4 ones. A further integration within a range of 0.03 1/Å perpendicular to the
aforementioned directions provided 1D plots of integrated intensity vs Q½�1�1�1�for
the out-of-plane reflection or integrated intensity vs Q 10�1½ � or Q 11�2½ � for the in-
plane ones. The extracted line profiles reveal multiple diffracted contributions
from nanowires and parasitic layer. In the symmetric out-of-plane reflection,
nanowire core and shell appear convoluted in a common signal, while the in-
plane data reveal both signals from the nanowire core and shell in a multiple
peak configuration. All curves have been fitted with the help of multiple
Lorentzian functions, with the intent to separate the contribution from core,
shell and parasitic layer to the diffracted signal. The extracted out-of-plane and
in-plane values were used to calculate the corresponding average lattice
parameters shown in Fig. 3b.
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We have selected the 22�4 in-plane reflection to compare calculated and
experimental 1D diffraction curves. A simple kinematical approximation was used
for the calculations, mainly paying attention to the effect of strain (as calculated by
continuum elasticity theory) and the behaviour of the core and the shell peak
positions as a function of the shell thickness. The intensity of the scattered signal
can be evaluated using the following kinematical approach

I Qð Þ ¼
X
j

fjðQÞe�iQðrj�ujÞ
����� j2 ð6Þ

The sum is carried out over all nodes (all atoms in all unit cells of the nanowire)
of the simulated strain profile, rj is the initial unstrained positional vector of the j-
th node and uj is the corresponding displacement vector. For a nanowire of infinite
length, the calculation for the in-plane 20�2 and 22�4 reflections collapses into the
following one-dimensional equation:

I Qhklð Þ ¼
X
j

fjðQhklÞe�iQhklðrj�ujÞ
����� j2 with hkl ¼ 20�2; 22�4 ð7Þ

Figure 3a shows that both the experimental data and the theoretically calculated
curve exhibit the same trend. With increasing the shell thickness, the In0.20Ga0.80As
peak gets more intense and shifts toward the In0.20Ga0.80As strain-free position,
whereas the GaAs peak moves away from the GaAs strain-free position and
becomes weaker, until it almost disappears.

Theoretical calculations. The distribution of strain in core/shell nanowires (with
infinite length) was calculated with the finite-element continuum elasticity model
featured in the commercial software “nextnano”. A description of the model is
given in ref. 18. The results were used as a reference for the analysis of the
XRD data.

For the calculation of the effect of strain on the bandgap of GaAs, we used the
band-edge deformation potential theory as explained in refs. 49,51. The effect of
hydrostatic strain on the bandgap energy of GaAs was calculated with equations
similar to Eq. (2). The additional change of the bandgap (ΔEv) due to strain
anisotropy, which lifts the degeneracy of the valence band at the Γ-point of the
Brillouin zone, was calculated according to ref. 49:

ΔEvðhhÞ ¼ � 1
2
δE111 ; for heavy holes ð8Þ

ΔEvðlhÞ ¼ � 1
2
Δ0 þ

1
4
δE111 þ

1
2

Δ2
0 þ Δ0δE111 þ

9
4

δE111ð Þ2
� �1=2

; for light holes

ð9Þ
and

δE111 ¼ 2
ffiffiffi
3

p
d
εzz � εxx

3
; ð10Þ

where Δ0= 0.34 eV is the spin-orbit splitting at the top of the valence band of bulk
GaAs and d=−4.5 eV is the deformation potential of GaAs.

Electronic structure calculations have been performed using density-functional
theory (DFT), as implemented in the ABINIT code57. We used the local density
approximation (LDA) and Hartwigsen-Goedecker-Hutter (HGH)
pseudopotentials58, and the results were consistent with a previous report on
GaAs59. The results are obtained using an energy cut-off of 20 Ha and a force
convergence threshold of 10−6 Ha/Bohr. The irreducible Brillouin zone was
sampled using a set of 8 × 8 × 8 k points. The effect of spin-orbit coupling (SOC)
was taken into account in the electronic structure calculations. The GW
calculations are performed using self-consistent quasiparticle (QP) method on both
energies and wave functions. Our QP calculations include self-consistent screened
exchange approximation to the self-energy60. The computational details for
obtaining the imaginary part of the self-energy are the same as in DFT calculations.

Data availability
All data are available from the corresponding author upon reasonable request.
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A bimodal soft electronic skin for tactile and
touchless interaction in real time
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Changan Wang1, Shengqiang Zhou 1, Jürgen Fassbender1, Martin Kaltenbrunner 2,3 & Denys Makarov 1

The emergence of smart electronics, human friendly robotics and supplemented or virtual

reality demands electronic skins with both tactile and touchless perceptions for the manip-

ulation of real and virtual objects. Here, we realize bifunctional electronic skins equipped with

a compliant magnetic microelectromechanical system able to transduce both tactile—via

mechanical pressure—and touchless—via magnetic fields—stimulations simultaneously. The

magnetic microelectromechanical system separates electric signals from tactile and touch-

less interactions into two different regions, allowing the electronic skins to unambiguously

distinguish the two modes in real time. Besides, its inherent magnetic specificity overcomes

the interference from non-relevant objects and enables signal-programmable interactions.

Ultimately, the magnetic microelectromechanical system enables complex interplay with

physical objects enhanced with virtual content data in augmented reality, robotics, and

medical applications.
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E lectronic skins (e-skins) will revolutionize the way we
interact with each other, with machines, electronics, and our
surrounding environment1–9. Current systems here pre-

dominantly rely on interfacing either through physically touching
(tactile interaction) or through tracking and monitoring of objects
without approaching them (touchless interaction). The ever-
increasing complexity that is involved in the manipulation of
objects however calls for e-skins that are capable of simulta-
neously perceiving both tactile and touchless inputs10–12. Emer-
ging technologies such as augmented reality (AR) appliances
entail new requirements on the process of interaction that dis-
solve the now-common separation between tactile and touchless
operation modes11. This paradigm shift will remove the barriers
between handling virtual and physical objects and enable even
complex interactions in a natural and intuitive way without the
need for numerous regulation knobs and different sensory
systems10,13,14.
Assuring the best user experience when manipulating objects

places several requirements on e-skins and their multimodal
sensors. These forms of interactive electronics are ideally soft and
mechanically compliant, selective in their response to objects of
interest only and most importantly are able to unambiguously
discriminate the desired interaction modes in real time. Presently,
there are exciting demonstrations of compliant tactile15–20 and
touchless sensorics including humidity21,22, magnetic23–25, tem-
perature26, optical27, and capacitive28,29 sensors. Flexible capaci-
tive structures28,29 with both pressure and proximity detection
are promising candidates for bimodal sensors. However, inter-
ference from irrelevant objects and difficulties in discriminating
the signal source are fundamental challenges for capacitive sys-
tems. Combining individual tactile and touchless sensors on one
flexible support is another appealing route. Yet, this requires
significantly higher design efforts and often cumbersome and
complex fabrication processes27 that may hamper widespread
permeation.
Here, we introduce a compliant magnetic microelec-

tromechanical system (m-MEMS) enabling tactile and touchless
interaction modes simultaneously in a single wearable sensor
platform. The m-MEMS relies on a genuine, distinguishable
bimodal sensing principle. It allows separating the signals from
tactile and touchless interactions into two non-overlapping
regions, realizing the challenging task of unambiguous dis-
criminating the two interaction modes without knowing the
history of the signal. The single sensing unit design of the m-
MEMS not only simplifies sensor architecture for fabrication, but
also avoids the interference from non-relevant objects. The
magnetic touchless sensing mode of the m-MEMS is ready to
specify the magnetic objects out of the irrelevant nonmagnetic
objects and enables signal-programmable manipulation of the
objects by adjusting the magnetic properties of objects of interest.
Natural skin not only readily distinguishes different types of sti-
muli; it is also sensitive over a wide range of signal intensity.
Implementations of tactile transducers are often optimized for a
high-pressure sensitivity. Practical electronic embodiments would
benefit from a high signal-to-noise ratio since only this readily
allows for appropriate signal amplification and post processing.
We thus optimized our m-MEMS to have a very high signal-to-
noise ratio of above 100 in the pressure range from 0.72 to
11.6 kPa. Our m-MEMS e-skins enable complex interactions with
a magnetically functionalized physical object that is supplemented
with content data appearing in the virtual reality. We design and
fabricate a demonstrator where our compliant m-MEMS skin is
used not only to identify an object of interest but also to activate a
pop-up menu and interact with its content relying on a combi-
nation of gestures and physical pressing. This intrinsically
bimodal magnetosensitive smart skin allows reducing the number

of physical “clicks” needed to activate the same functionality of
the device to one, instead of at least three as up to now required
when using state-of-the-art gadgets. The demonstrated enhanced
—yet intuitive—interaction and manipulation ability enabled by
our m-MEMS platform is an important milestone toward mul-
tifunctional, highly compliant human-machine interfaces. Beyond
the field of AR, e-skins with multimodal interaction abilities are
expected to bring benefits for healthcare, e.g., to ease surgery
operations and manipulation of medical equipment30,31, as well
as for humanoid robots to overcome the challenging task of
grasping32,33.

Results
Compliant m-MEMS platform. The m-MEMS platform is rea-
lized by packaging a flexible magnetic field sensor and a com-
pliant permanent magnet with a pyramid-shaped extrusion at its
top surface into a single architecture (Fig. 1a). The magnetic field
sensor of the m-MEMS changes its electrical resistance when
exposed to an external magnetic field of a magnetically functio-
nalized object for touchless interaction and by mechanical
deformation of the m-MEMS package upon application of pres-
sure for tactile interaction (Fig. 1b). The signals of electrical
resistance from tactile and touchless interactions separate into
two non-overlapping regions by adjusting the field of the mag-
netic beacons in polarity and strength (Fig. 1c). The compliant m-
MEMS platform consists of two major components. The first one
is a soft frame based on a 335-μm-thick Polydimethylsiloxane
(PDMS) rubber support with a central blind hole (Fig. 1d).
The opening in the PDMS frame accommodates a 75-μm-thin
compliant permanent magnet (NdFeB microparticles embedded
in PDMS rubber) with 28-μm-high pyramid-shaped extrusions at
its top surface (Fig. 1e–i). The second component is a high-
performance magnetic field sensor, relying on the giant magne-
toresistive (GMR) effect, which is hosted on a 20-μm-thin flexible
polymeric foil (Fig. 1f). The thin foil seals the opening of
the PDMS frame, resulting in a packaged flexible m-MEMS
platform. Details on the fabrication are provided in Supplemen-
tary Figs. 1 and 2.
Applying a perpendicular directed pressure to the m-MEMS

platform changes the distance between the permanent magnet
and the GMR sensor through deformation of the 112-μm-thick
air gap (Fig. 1g), which causes an altered field at the sensor
location. The NdFeB microparticles inside the compliant
permanent magnet (Fig. 1j and Supplementary Fig. 3) generate
a magnetic stray field (Fig. 1k, Supplementary Figs. 4 and 5),
which is adjusted to deliver a field strength in the range from
about 2.1 to 1.7 mT at the location of the GMR sensor, depending
on the magnet-to-sensor separation distance (Fig. 1l). This field
range is selected to assure that the GMR sensor operates at its
maximum sensitivity (Fig. 1m).

Tactile and touchless operation modes. The entire soft m-
MEMS platform is thin and compliant (Fig. 2a), can be bent
(Fig. 2b) and applied to curved surfaces such as a model finger
(Fig. 2c). Worn as e-skin, our m-MEMS platform readily enables
interaction with surrounding magnetic objects in both tactile and
touchless modes (Fig. 2c). We demonstrate the capabilities with a
delicate daisy flower to interact with (Supplementary Movie 1).
One petal of the flower is decorated with a piece of thin and
compliant permanent magnet (Fig. 2d) with a small field of
<0.6 mT (Supplementary Fig. 6). The direction of the magnetic
stray field generated by this patch is opposite to the polarity of the
built-in magnetic field at the location of the GMR sensor that
stems from the compliant permanent magnet of the m-MEMS
platform. Figure 2e shows the time evolution of the change in
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electrical resistance of the GMR sensor (ΔR/R0) upon approach-
ing the petal, touching it and retracting the finger from the petal.
The signal of the GMR sensor decreases when the fingertip
approaches the petal (independent of the manipulation in the
touchless mode, the signal remains negative; see discussion for
the Supplementary Fig. 7). We note that the sensing responses
might be different if the finger approaches the flower petal
(Fig. 2a–e) from the back or from the front side. However, for in-
plane isotropic magnetic stray fields varying with the distance to
the object only, the readout will still be the same. As soon as the
fingertip touches the petal and presses it, the signal rapidly
increases and changes in sign to positive values where it remains
during tactile interaction. Since the petal is very soft, the pressure
applied on the petal is imperceptible by human skin and is esti-
mated to be <1 kPa. Typically, the pressure used by humans for
the manipulation of objects in the tactile mode is above 1 kPa
(colloquially referred to as the softest human touch34). This
qualitative signal change upon transition from touchless (negative

signal) to tactile (positive signal) interaction mode intrinsically
renders discrimination between the modes unambiguous. Fur-
thermore, in contrast to state-of-the-art reports, our m-MEMS
skins sense the current interaction mode without the need to
know the history of the signal change to interpret the state. This
eases signal post processing and in turn speeds up response time.
The entire interaction process is illustrated in Fig. 2f. When the

m-MEMS platform approaches the magnet on the petal, its field
starts to compensate the built-in field of the compliant permanent
magnet (Supplementary Fig. 7), resulting in the increase of the
electrical resistance of the GMR sensor. The magnetic field will be
compensated further until the m-MEMS platform is in touch with
the magnetic object (the petal in this case). Applying pressure
then moves the GMR sensor toward the pyramidal shaped built-
in magnet. Here, the magnetic field at the location of the GMR
sensor starts to increase, in turn leading to a decrease of the
resistance of the GMR sensor. The processes illustrated in Fig. 2f
are confirmed by the simulated change of the magnetic field at the
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location of the GMR sensor during the interaction process
(Supplementary Fig. 8).
We experimentally determine the applied pressure during

tactile interaction and correlate it to the change of the electrical
resistance of the GMR sensor (ΔR/R0) right after switching from
touchless to tactile mode with a custom-built setup that
simultaneously measures the change of the electrical resistance
and the corresponding mechanical force applied on the m-MEMS
platform (Supplementary Fig. 9 and Supplementary Movie 2).
Here, the m-MEMS is moved upward to approach a permanent
magnet (of same thickness and magnetization as the one on the
flower petal, 4 mm in diameter) fixed at the tip of a force meter,
followed by bringing them into contact and further pressing them
together. When a predefined pressure is reached, we move the m-
MEMS back to its original position. We evidence that the turning
points in the resistance change are consistent with the ones of the
force change (Fig. 2g). The small offset observed between the
turning points in the force and relative resistance curves is due to
the limited sensitivity of the force sensor (gentle pressure of
<79 Pa at the beginning and end of the mechanical contact cannot
be detected, Supplementary Fig. 10). Bringing the m-MEMS
platform into contact with the magnet causes ΔR/R0 to jump from
−0.92% (negative value, characteristic of touchless mode) to
+0.74% (positive value, characteristic of the tactile mode) with a
pressure increase of only 318 Pa, which is much smaller than the
softest human touch (1 kPa).
The essence of manipulating magnetic objects with our m-

MEMS platform is based on the algorithm that correlates the
signal of the sensor ΔR/R0 to the commands for manipulation
(Supplementary Fig. 11). As the signals specific to touchless and
tactile manipulation modes do not overlap, the compliant m-
MEMS is able to unambiguously discriminate between the two
interaction types. In more detail (Fig. 2h), the value of ΔR/R0

upon touchless interaction is always negative, but ΔR/R0 at the
initial stage of the tactile interaction (from the very event of
touching to a certain degree of subsequent pressing) is also
negative and thus in theory briefly overlaps in this region with
the signal of the touchless interaction mode. However, in practical
settings, especially such ones that involve manipulation processes
with (human) fingers, the minimum pressure required to switch
the signal polarity (here determined to be <318 Pa) is overcome
immediately upon a pressing event. In addition, this transition
to the positive signal range is achieved during <0.8 s when
moving the finger even at a slow speed of 1 mm/s (Fig. 2g).
We demonstrated that the evolution of the signal during the
touchless and tactile interaction process is highly repeatable
(Supplementary Fig. 12), which endows the m-MEMS platform
with a safety window for reliably manipulating objects in both
interaction modes.

Enhancement of the m-MEMS performance. The presence of
the air gap between the GMR sensor and the compliant perma-
nent magnet as well as the pyramid-shaped extrusions drastically
enhance the performance of the compliant m-MEMS platform in
terms of the pressure sensitivity and sensing speed. The pressure
sensitivity is determined by the change of the magnetic field at the
location of the GMR sensor, which is realized through relative
displacement of the soft magnet in the blind hole (Fig. 1g). We
simulate the mechanical deformation of the individual compo-
nents (Fig. 3a) under low and high applied pressures. We extract
the simulated change of air gap height versus pressure (Fig. 3b)
from these calculations. Due to the cantilever-like structure of the
m-MEMS package, the air gap height can be substantially reduced
even at a low pressure of <764 Pa (Fig. 3a, upper panel), resulting
in a sharp increase of ΔR/R0 for pressures over 318 Pa (see also

transition region in Fig. 2g, dashed blue line). At higher pressures
( >764 Pa), the pyramid-shaped extrusions are brought into
mechanical contact with the GMR sensor. Elastic deformation of
the soft pyramids (Fig. 3a, lower panel) then brings the compliant
permanent magnet still closer to the GMR sensor. This elastic
shape change of the magnetic pyramids provokes a signal change
ΔR/R0 in regions of higher pressures and significantly expands the
sensitivity range of our m-MEMS platform (corresponds to the
solid blue line in Fig. 2h) for object manipulation in the tactile
mode. The dynamic shape deformation of the compliant m-
MEMS platform under pressure is shown in Supplementary
Movie 3.
To demonstrate the effectiveness of the air gap with pyramid-

shaped soft magnet design, we compare the finite element
mechanical simulations of the m-MEMS platforms possessing
either only an air gap, or only pyramid-shaped extrusions
(Fig. 3b). The displacement of the compliant permanent magnet
towards the GMR sensor for the device with an air gap only
(without pyramids) completes solely in the low-pressure range. In
contrast, the displacement of the compliant permanent magnet
towards the GMR sensor for the structure with pyramids only (no
air gap) is very small in the low-pressure range. The simulated
data are in agreement with the experimental results (Fig. 3c). The
ΔR/R0 of the structure with air gap only and with both air gap and
pyramids below 1 kPa is much higher than that of the structure
with pyramids only, demonstrating the contribution of the air gap
to the sharp increase of ΔR/R0 for pressures below the softest
human touch. The change of ΔR/R0 for the structure with air gap
only is higher than that of the structure with both air gap and
pyramids for pressures below 1 kPa, but ΔR/R0 gradually
saturates in the higher-pressure region rather than continuously
increasing as in the case of structures with pyramids. This further
corroborates the importance of pyramidal structures in improv-
ing the pressure sensitivity at high pressures.
Pyramidal extrusions in addition avoid sticking of the

compliant permanent magnet to the PI foil of the GMR sensor.
This anti-sticking effect significantly increases the dynamic range
of the sensor, and ensures fast switching between touchless and
tactile interaction modes in less than 75 μs (Fig. 3d, e). Without
the pyramid-shaped extrusions, the compliant permanent magnet
sticks to the surface of the PI foil and the electrical resistance of
the m-MEMS recovers rather slowly after releasing the pressure
(Supplementary Fig. 13).
Our m-MEMS platform exhibits an exceptionally high signal-

to-noise ratio (SNR) of above 80 at the small pressure of 240 Pa,
and above 100 in the entire pressure range from 0.72 to 11.6 kPa
due to its small noise floor of only 0.01% (Fig. 3f). Our approach
of optimizing the SNR rather than the pressure sensitivity is
motivated by practical considerations of signal amplification.
Indeed, from an electrical engineering point of view it is rather
straightforward to amplify even small signals given that the SNR
is large. We here outperform state-of-the-art reports35–37

(Supplementary Fig. 14), rendering our m-MEMS concept highly
promising even for pressure transducers only. With high SNR,
our m-MEMS are able to detect different levels of pressure in a
highly repeatable way (Fig. 3g). Even after 5000 pressure-release
cycles (with a maximum pressure of 42.5 kPa), no degradation in
the sensor response is observed (Fig. 3h).

Array of compliant m-MEMS. The compliant m-MEMS plat-
form is readily scaled into a sensor array (Fig. 4a, b) for mapping
the spatial distributions of magnetic fields and pressure. A PDMS
frame is modified to have four openings (diameter of each
opening, Ø, is 4 mm) accommodating four compliant permanent
magnets (Ø= 3 mm, magnetized in an in-plane field of 1.5 T).
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The PDMS frame is encapsulated with a polyimide foil hosting an
array of four GMR sensors consisting of Py/Cu multilayers. Such
packaged compliant m-MEMS arrays, here consisting of four
functional elements (four-pixel array), intimately conform to
curved surfaces such as a model finger (Fig. 4c). The four sensors
are connected in series and driven with a constant current. The
voltages of each m-MEMS are simultaneously recorded with a
data acquisition box. The resistance of each pixel is calculated by
dividing the measured voltage by the applied current. Based on
the change of the resistance of each m-MEMS element upon
applying a pressure or an external magnetic field, the distribution
of both pressure and magnetic field can be uniquely recognized.
We are thus able to map of the resistance changes of the m-
MEMS in the array at every spatial position when activated by
gently pressing (Fig. 4d). Here, a non-magnetic cotton swab is
used to press one of the pixels in the array, leaving the others
unaffected. Similarly, when an external magnetic object approa-
ches each of the four m-MEMS pixels, the one closest to the

external magnet reveals the most pronounced change in resis-
tance (Fig. 4e), thus enabling spatial mapping and contributing to
the improved spatial resolution of the m-MEMS in touchless
mode. Downscaling lateral dimensions of individual sensor ele-
ments can achieve further improvement of the spatial resolution.

Multichoice 3D touch in AR. AR allows to complement real
objects with features and properties evident in virtual reality only.
The possibility to interact with the virtual content and thus
manipulate the properties of the real object is one of the major
promises of future AR devices (Supplementary Fig. 15). We here
realize an interactive e-skin with tactile and touchless sensing
functionalities that allows us to perform complex interactions
with a physical object (e.g., a region of a glass plate) supple-
mented with content data appearing in the virtual reality (e.g.,
virtual knobs superimposed on the glass plate). The data can be
selected and manipulated using our compliant m-MEMS
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platform in the form of multiple choices (Fig. 5, Supplementary
Movie 4). Those pop-up at a (virtual) screen upon approaching
the object, can be chosen by swiping the finger to the function of
interest and can be manipulated by pressing. Finger-motion-
correlated manipulation of multichoice in a touchless manner
requires a sufficiently large interaction distance and thus sensi-
tivity of the e-skin. Here, the real-world object (the glass plate) is
equipped with a strong magnetic field source to improve the
proximity sensitivity even at larger distances (Supplementary
Figs. 16 and 17).
To demonstrate the concept, we adhere a compliant m-MEMS

platform conformably to a wooden fingertip (inset in Fig. 5f) that
then interacts with a glass plate with a permanent magnet located
behind. Since the distance of the touchless interaction increases
with a decreasing gradient of the magnetic field in the front region
of the glass plate, we fix a permanent magnet with a strong
magnetic stray field 1-cm-far behind the glass plate in order to
have a long touchless interaction distance (Supplementary Fig. 18).
We here arrange four GMR sensors into a Wheatstone bridge and
package one of them into the m-MEMS platform to cancel
unwanted thermoresistive effects of the GMR sensors (Supple-
mentary Fig. 19 and Supplementary Note 1). Although this
translates the output signal into voltage changes (ΔV/V0) rather
than a change of resistance (ΔR/R0), the signal ΔV/V0 generated
through touchless manipulation and tactile manipulation is still
separated by a safety window and can be unambiguously
discriminated (Supplementary Fig. 20). Upon approaching the
glass plate, the ΔV/V0 of the m-MEMS platform increases. Once
the m-MEMS sensor contacts the glass plate and pressure is

applied, the ΔV/V0 starts to decrease. Our m-MEMS e-skin is able
to select a virtual item (i.e., room temperature, Fig. 5b–d, g–i, l–n)
from a multichoice list on a virtual display in touchless mode, and
then adjust the value of this option using tactile interactions
between the finger and the glass plate (Fig. 5e, j, o). For example,
the room temperature can be decreased by firmly pressing or
increased by gently pressing.
The manipulation of virtual objects is realized by coding

different execution sequences triggered by electrically read signals
(ΔV/V0) from the m-MEMS. Figure 5p shows the evolution of the
electrical signal during the interaction process between a wooden
finger and a glass plate decorated with a piece of permanent
magnet (Fig. 5a–o). We define distinct voltage thresholds and
motion patterns of the finger and correlate them with switching
events of data elements shown on a virtual screen. The option of
interest (here, room temperature) is selected for further manipula-
tion by pointing to a proper location for a while. When ΔV/V0

passes the safety window, the tactile interaction mode is activated
and ΔV/V0 is used to adjust the value of the visual item of choice.
For example, by firmly pressing, the temperature is changed from
21.0 °C to 19.6 °C. Our e-skin here enables us to manipulate virtual
objects in a way we usually do with physical objects.
The field of a magnetic object can be adjusted to the requirement

in terms of its strength and gradient (Figs. 2 and 5). Thus, the
electrical signal of the touchless interaction can be defined for
easily coding the manipulation of the objects of choice, which
enables intrinsic selectivity upon interaction with irrelevant objects.
Our multichoice 3D touch demonstrator (Fig. 5, Supplementary
Movie 4), may enable a broad range of applications. Beyond
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proximity sensing, our m-MEMS platform also features an angle
sensing functionality (Supplementary Fig. 21, Supplementary
Note 2, Supplementary Movie 5), which is of advantage for
rotation-based manipulations in AR settings25,38 and medical
applications. Generally, we envision that surgeons wearing e-skins
equipped with an m-MEMS platform will acquire the ability to
quantitatively sense mechanical properties of tissues upon a regular
palpation. At the same time, the touchless interaction functionality
may enable surgeons to manipulate medical equipment in a
touchless manner, helping them to avoid unwanted contamination.
Furthermore, touchless perception through our m-MEMS platform
may enable robots to navigate their grippers to a desired position in
a touchless way, while the tactile perception guarantees a suitable
force for grasping objects without dropping or breaking them.
Although the demonstrations here are done with the m-MEMS
platform positioned on a fingertip of a wooden finger, the same
performance is achieved when the device is positioned on a human
finger (Supplementary Fig. 22, Supplementary Movie 6).

Discussion
We put forth a concept of e-skins equipped with a compliant
magnetic microelectromechanical system (m-MEMS) that
synergistically combines tactile and touchless interaction modes
in a single sensor unit. The unambiguous discrimination between
the interaction modes is aided by the rational design of the
structure (air gap and pyramid-shaped extrusions) and the
magnetic stray field inside the m-MEMS as well as the one
around an object of interest. The m-MEMS architecture in this
work is of a general design. Albeit already highly functional,
further performance optimization is expected through adjusting
size and number of the pyramids, the gap height, the thickness of
the PDMS film, the diameter of the circular opening and the
magnetic moment of the compliant magnet.
We showcase the usability of our bimodal e-skin in AR set-

tings, where a sensor-functionalized hand performs complex
selection and manipulation of virtual objects by simultaneously
using the two sensing modes. Our concept provides a fertile base
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interaction by pressing the knob with a finger (e, j, o). p Evolution of the electrical readout upon the interaction process between the compliant m-MEMS
platform applied to a wood finger and a glass plate, decorated with a permanent magnet. ΔV= V0 − V with V0 and V denoting the initial voltage and real-
time voltage, respectively
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for a cornucopia of applications in interactive electronics, sup-
plemented reality, human-machine interfaces, but also for the
realization of smart soft robotics with highly compliant integrated
feedback systems as well as in medicine for physicians and
surgeons.
Our here-developed m-MEMS platform is very general and can

be realized based on magnetic field sensors other than those
relying on the GMR effect. Concepts including compliant Hall
effect24,39 (sensitive to out-of-plane magnetic fields) and com-
pliant planar Hall effect40 (sensitive to in-plane magnetic fields)
sensors might offer further advantages to m-MEMS platforms.
They are linear sensors of magnetic field and also possess high
sensitivity to small magnetic fields. Considering that generic stray
fields of magnetized objects contain three components (two in-
plane and one out-of-plane), we envision that the m-MEMS
would benefit from three-axial compliant magnetic field sensors.
The wearable m-MEMS platform supports interaction with

multiple magnetic objects. If the functionality of objects is
encoded in a different magnetic field profile (different field
strength, different symmetry of the magnetic field, different field
gradients), then our sensing platform can be trained to recognize
these objects. This is the case demonstrated in Figs. 2 and 5. In
the first case when a thin magnetic patch is used, the field is weak
and interaction starts at close distance. In the second case
(standard permanent magnet), the field is rather strong and
interaction starts at a larger distance to the object. The spatio-
temporal variation of the signal will be different when
approaching these two objects. These differences are unique fin-
gerprints of each magnetic object, allowing constructing spatio-
temporal maps for their unique identification.

Methods
Preparation of the silicon mold. Thermally oxidized SiO2 (1000 nm)/Si(100)
wafers were coated with a grid photoresist pattern relying on a regular photo-
lithography processing. The exposed SiO2 patterns were etched by HF solutions.
After this, the samples were anisotropically etched in the solution of KOH and
isopropanol (35%wt KOH in H2O: Isopropanol= 4:1, v/v) at 80°C. When the
etching process was finished, the samples were cleaned in water and ethanol, and
further modified with 1 H,1 H,2 H,2H-perfluorodecyltrichlorosilane (Sigma-
Aldrich) by gas phase silanization to prevent adhesion.

Preparation of the GMR sensor based on Py/Cu multilayers. Polyimide (PI)
resin (PI2545, MicroSystem, USA) was drop casted on Polyethylene terephthalate
(PET) sheet (125 μm thick) fixed to a film applicator (TOC AB3400). Then, a wet
PI coating was fabricated by the film applicator. The wet polymeric film was dried
at 80 °C. After drying, the sample was heated at 200 °C for 1 h to crosslink the PI
film. Here, PI films with a thickness of 20 μm were used as a substrate for the
deposition of GMR sensors. GMR multilayers with a stack [substrate//Ta(5 nm)/
[Py(1.5 nm)/Cu(2.3 nm)]30/Py(1.5 nm)] were grown by magnetron sputter
deposition (BESTEC, Germany) at room temperature.

Characterizations. Scanning electron microscopy (SEM) images and elemental
mappings were taken using a Hitachi S-4800 microscope. Magnetic hysteresis loops
were measured at 300 K using a superconducting quantum interference device
vibrating sample magnetometer (SQUID-VSM, Quantum Design). Compliant
permanent magnets (NdFeB microparticles embedded in PDMS) were magnetized
in a 1.5 T magnetic field of an electromagnet. Confocal microscopy images were
taken using a confocal microscope (Zeiss, Smartproof 5). Giant magnetoresistive
performance of Py/Cu multilayers (Py: Ni80Fe20) was measured at room tem-
perature in an in-plane magnetic field generated by an electromagnet. The force
was measured by a universal digital force gauge (Sauter FH-5). Electrical resistance
of the compliant m-MEMS platform was measured using a Keysight B2902A or
Keysight 34461 A device.

Magnetic field simulation. Here, we describe our calculation of the spatial dis-
tribution of a magnetic field ~B outside a disk-shaped compliant permanent magnet
with pyramid-shaped extrusions, which is homogeneously filled with magnetic
NdFeB microparticles. To simplify numerical calculations, we assume that each
microparticle is (i) of spherical shape with a radius, R, of 2.5 μm and (ii) magne-
tized along~y-axis. In this case, the magnetic field, which is generated outside each

magnetic particle, has a following form:

B
!

i ~rið Þ ¼ μ0
4π

3~ni ~niM
!
 �

� M
!

r3i

where μ0 is a vacuum permeability, ~ni ¼~ri=ri with ri ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xiÞ2 þ ðy � yiÞ2 þ ðz � ziÞ2

q
being a distance from the center of a magnetic

particle (xi,yi,zi,) to any other point (x, y, z), M
!¼ 4

3 πR
3Ms~y is the total magnetic

moment of a spherical particle, with Ms being the saturation magnetization.
Due to the big density of magnetic microparticles inside the polymeric disk-

shaped film and their random distribution, we consider the magnetic disk as a
homogeneously magnetized body with a reduced saturation magnetization
compared with an individual microparticle. We calculate numerically the spatial
distribution of the magnetic field generated by a disk and sum it with a field
distribution, which is generated by magnetic microparticles located in pyramids.
The resulting field distribution is presented in Fig. 1k.

Mechanical simulations. The mechanical simulation has been calculated in
Abaqus Standard. It is split into the deformation of the sensor enclosure with
rotational symmetry and the deformation of the NdFeB permanent magnet pyr-
amids. The sensor geometry as shown in Supplementary Fig. 9 is indented in
perpendicular direction by a rigid stamp of 4-mm diameter that is loaded by a
certain pressure. The two cases of a non-sealed inner sensor volume with
unhampered air exchange as well as a perfectly sealed volume with adiabatic
compression of the air content have been simulated. For the compression of the
permanent magnet, a single unit cell of an infinite array of the pyramid-structured
disk has been simulated. For both cases the displacement versus the applied
pressure was calculated.

Discrimination of the two interaction modes. Upon approaching or retreating
the finger with a m-MEMS to or from an external magnetic object (blue object), the
electrical resistance of the magnetic field sensor integrated in the m-MEMS plat-
form will change (Supplementary Fig. 7). In the touchless mode, the signal change
remains negative (Fig. 2 and Supplementary Fig. 11). The software decides that the
interaction mode is switched from the touchless to the tactile one as soon as the
signal ΔR/R0 reached the contact point (0 Pa; highest negative signal change) and
subsequently raised up to the value corresponding to 318 Pa of applied pressure. As
soon as these two conditions are detected by the electronics, the signal analysis is
paused for a certain user-defined time. After this waiting time, the signal level is
analyzed further. If ΔR/R0 is positive (negative), the interaction mode is assigned to
be tactile (touchless) (Supplementary Fig. 11).

We note that the compliant m-MEMS platform can provide a reliable and
unambiguous separation between the two interaction modes even if the settings are
sub-optimal. One of the examples is when the strength of the external magnetic
field is chosen to be large enough that the resulting resistance change upon
touchless interaction is very large and positive values of the resistance change
cannot be achieved upon tactile interaction. Still, by properly choosing the logic
behind the interaction process, touchless and tactile modes can be readily separated
(Fig. 5 and Supplementary Fig. 20).

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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Nonstoichiometric Phases of Two-Dimensional Transition-Metal
Dichalcogenides: From Chalcogen Vacancies to Pure Metal
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ABSTRACT: Two-dimensional (2D) membranes consisting of a single layer of Mo
atoms were recently manufactured [Adv. Mater. 2018, 30, 1707281] from MoSe2 sheets
by sputtering Se atoms using an electron beam in a transmission electron microscope.
This is an unexpected result as formation of Mo clusters should energetically be more
favorable. To get microscopic insights into the energetics of realistic Mo membranes
and nonstoichiometric phases of transition-metal dichalcogenides (TMDs) MaXb,
where M = Mo and W and X = S, Se, and Te, we carry out first-principles calculations
and demonstrate that the membranes, which can be referred to as metallic quantum
dots embedded into a semiconducting matrix, can be stabilized by charge transfer. We
also show that an ideal neutral 2D Mo or W sheet is not flat but a corrugated structure,
with a square lattice being the lowest-energy configuration. We further demonstrate
that several intermediate nonstoichiometric phases of TMDs are possible as they have
lower formation energies than pure metal membranes. Among them, the orthorhombic
metallic 2D M4X4 phase is particularly stable. Finally, we study the properties of this
phase in detail and discuss how it can be manufactured by the top-down approaches.

Recent progress in the mechanical1 and liquid2 exfoliation
of two-dimensional (2D) systems from layered bulk

solids bonded by weak van der Waals (vdW) forces, as well as
their direct synthesis by chemical methods,3 made it possible
to manufacture dozens of 2D materials with unique and diverse
characteristics. In addition to tailoring their properties for
particular applications, the investigations of 2D systems gave
rise to a fundamental question: Is it possible to synthesize free-
standing 2D counterparts of solids, which normally have bulk
isotropic, but not layered, structure? Recent experiments
indicated that this is indeed possible as hematene layers were
produced4 from bulk α-Fe2O3, which is a non-vdW solid.
Owing to the exotic properties such as highly active surface

charge carriers with fast kinetics and surface plasmon
resonance, 2D metals offer potential applications for catalysts,
battery devices, and optical sensors.5 In that context, a lot of
attention has also been paid to free-standing 2D metals.
Specifically, patches of 2D iron were reported to appear inside
of graphene nanopores in the transmission electron micros-
copy (TEM) experiments.6 Likewise, suspended one-atom-
thick Mo membranes were recently fabricated from monolayer
MoSe2 sheets via complete sputtering of Se atoms in a
scanning TEM.7 As for the theoretical efforts, the trends in the

stability and properties of perfectly flat 2D metals have been
studied using first-principles calculations,8 along with the
energetics of small 2D metallic patches embedded in graphene
and stabilized by the strong covalent bonds at the metal−
graphene interface.9,10 It should be pointed out, though, that
the experimental observations of 2D systems, which were
interpreted as pure metal membranes, could also be explained
through the formation of mixed 2D phases, e.g., carbides or
oxide, as reported for gold,11 iron,10,12 or copper,13 which hints
that mixed phases may also be present in the case of 2D Mo
embedded into MoSe2 sheets.

7

Specifically, taking into account that Mo sheets were
produced by the electron beam by removal of Se atoms from
2D MoSe2, there are several contradictions or points that
should be clarified. The membranes were reported to have a
hexagonal structure, but the calculated and experimentally
measured bond lengths did not match. This may be due to the
mechanical strain present in the system, but, as we show below,
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a hexagonal lattice does not correspond to the lowest-energy
2D configuration of Mo. Besides, as Se atoms were gradually
(over a time of a few minutes) removed by the electron beam,
similar to other experiments on the exposure of TMDs to
electron-beam irradiation,14−18 a natural question is why other
phases with intermediate stoichiometry were not observed,
contrary to, e.g., tin dichalcogenides.19 This problem is not
only of fundamental importance but also directly relevant to
the electron-beam engineering of 2D materials.20−24

In this work, we use extensive first-principles calculations to
study the structure and energetics of 2D metals and
nonstoichiometric phases of MoSe2 and some other most
common 2D transition-metal dichalcogenides (TMDs). The
2D phases were assumed to appear by the formation and
aggregation of vacancies in the pristine system. The energetics
of the 2D materials with different stoichiometries is analyzed
for a wide range of chemical potentials. We further calculate
the electronic structure of the most stable nonstoichiometric
phase.
Specifically, we employed density functional theory (DFT)

as implemented in the VASP code,25,26 with the PBE exchange
and correlation functional.27 A plane-wave cutoff of 600 eV
was used in all of the calculations. The geometry optimization
was carried out based on minimization of the forces acting on
the atoms in the structure, with the force tolerance being set to
0.01 eV Å−1. The Brillouin zone of the primitive cells of the
materials was sampled with a 12 × 12 × 1 Monkhorst−Pack k-
mesh. We also carried out test calculations using GPAW
code28 and got similar results.
We simulated both finite metallic patches inside of a sheet of

the parent TMD and infinite nonstoichiometric sheets

assuming that they are also embedded into the 2D TMDs.
In the latter case, we used two approaches: “manual” search for
the metastable nonstoichiometric phases and “automatic”
search using the evolutionary algorithm USPEX,29,30 which is
a powerful tool for predicting stable compounds of various
dimensionalities of given elements. USPEX was successfully
extended to 2D materials.31,32 First, the variable-composition
search for stable 2D-MoxSey was performed using the
algorithm described in ref 33. There were two searches with
the initial thickness of the layer equal to 3 and 5 Å because
MoxSey may prefer nonplanar structures. Both calculations
showed similar results. There were three stable structures
predicted, namely, Mo5Se2, MoSe, and MoSe2. After that, for
each stable composition, the fixed-composition search was
performed in order to predict the most thermodynamically
stable structure of each composition. Computational search for
free-standing two-dimensional Mo5Se2 and MoSe layers was
performed with 2, 3, 4, 8, and 12 formula units in the
considered unit cell. The first generation of 160 structures was
created using a plane group symmetry generator, while all
subsequent generations contained 20% random structures, and
80% were created using heredity, soft mutation, and trans-
mutation variation operators. The newly produced structures
were all relaxed, and the energies were used for selecting
structures as parents for the new generation of structures.
Structure relaxations were performed with the same DFT
method with the exception that the plane-wave kinetic energy
cutoff was set to 500 eV and the Brillouin zone was samples by
Γ-centered k-point meshes with a resolution of 2π × 0.05 Å−1.
The phonon density of states of predicted MoSe was calculated

Figure 1. Atomic structures of 2D phases of Mo and W, top and side views, for the constrained (flat) atomic network (a−c), and those obtained
without any constraints (d−f). (g) Comparison of the cohesive energy of the 2D phase of Mo and W as calculated using VASP and GPAW codes.
The data represented by yellow bars are taken from ref 8.
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using the finite displacement method as implemented in the
PHONOPY code.34

The annular dark field scanning TEM (ADF-STEM) image
simulations were carried out with the Dr. Probe35 code
assuming an aberration-free probe and 5 Å source size to give a
focus spread of 3.0 nm. The STEM simulations were
performed at 80 kV with a 30 mrad illumination half-angle
and 20 mrad outer detection angle.
We studied first the energetics of the periodic 2D phases of

transition metals, which are present in the most common
TMDs: Mo and W. To assess the stability of 2D metals, the
atomic structure of various 2D infinite periodic systems was
fully optimized without any constraints, and cohesive energy
Ecohesive was calculated. It was defined as usual as Ecohesive =

Eatom − E N
N
( ) , where Eatom is the energy of an isolated atom, E is

the energy of the structure, and N the total number of atoms in
the unit cell. Note that Ecohesive is positive, and larger values
indicate a higher stability of the system.
The atomic structures of transition metal membranes and

the associated cohesive energies are presented in Figure 1.
Contrary to the simulation setup employed in ref 8, where
perfectly flat structures were studied to get insights into the
trends in the geometry and bonding, we allowed out-of-plane
relaxation. Our results for flat structures proved to be in good
agreement with those presented in ref 8, and the hexagonal
(flat) phase was found to have the highest cohesive energy for
both Mo and W. However, our simulations indicate that when
out-of-plane relaxation is allowed the most energetically
favorable phase is the square one. This stresses the importance
of the out-of-plane degrees of freedom for the realistic 2D
materials in the three-dimensional space.
However, a Mo hexagonal lattice was observed in the

experiment,7 contrary to the most energetically favorable
square lattice. The experimental bond length was found to be
2.7 Å. From our simulations, the apparent separation between
the atoms (projected into the plane) in the corrugated

hexagonal lattice and the planar hexagonal lattice is 2.47 and
2.57 Å, respectively, in the case of Mo. Because the Mo
domains are formed by sputtering of Se atoms from MoSe2, the
islands may be subjected to tensile strain, but to match the
experiment, strain must be rather high, nearly 10%. Moreover,
careful analysis of the TEM images shown in Figures 1−3 in ref
7 using the scale bar of 5 Å indicates that many bonds are
much longer, nearly 3 Å. The same conclusion also can be
drawn from the analysis of the atomically perfect interface
between MoSe2 and the new phase, which suggests close lattice
constants of both phases. The tensile strain of 20% is
unrealistically high, especially with account for migration of
Mo atoms into the membrane areas, as observed in the
experiment,7 and in general, it is unclear why hexagonal lattice
is preferred.
To understand the reason for large separations between the

atoms, we considered possible charging of Mo membranes. A
Mo island in a MoSe2 sheet is essentially a quantum dot
embedded into a semiconductor matrix. If the sample is n-type
doped, it may give rise to negative charge accumulation. The
additional charge may also come from other defects created in
MoSe2 by the electron beam

36−38 or adsorption of impurities39

on these defects, which gives rise to the occupied or partially
occupied defect-induced states in the gap.
Simulations for the neutral and charged systems were

conducted, and the results are presented in Figure 2. In the
neutral system considered, a small cluster of metal atoms is
formed, and the cluster moves then to one of the edges. The
behavior of the charged system is different. As evident from
Figure 2c, the extra charge is localized in the membrane area,
giving rise to longer bonds between the metal atoms. From the
radial distribution function shown in Figure 2d, it is clear that
charging of the system improves the agreement between theory
and experiment.7 With a charge of 0.2 e, the bond length of the
structure matches well the experimental value of 2.7 Å, with
some distortions at the edges at the interface to MoSe2.
Moreover, calculations for infinite free-standing metals showed

Figure 2. (a) Illustration of the evolution of the atomic structure of the metal membrane upon introduction of additional charge. It is evident that
extra charge increases interatomic distances. (b) Optimized structure of the membrane with extra Mo atoms. (c) Charge density distribution with
extra 0.3 e charge in the system. (d) Radial distribution function for the neutral and charged system.
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that the hexagonal phase is energetically preferable over the
square lattice when an additional charge is added.
As an alternative scenario, we also investigated the changes

in the atomic structure of the membrane when extra Mo atoms
are added to the system, Figure 2b. Extra atoms do stabilize the
membrane, but interatomic distances are smaller than those in
the experiment, as follows from Figure 2b and the analysis of
the radial distribution function. On the basis of these results, it
appears that accumulation of the extra charge is the main
reason for the stabilization of the membrane and rather a long
separation between the Mo atoms.
As in the experiment, Se atoms were gradually (over a time

of a few minutes) sputtered by the electron beam before
patches of pure metals were produced; we also studied phases
with intermediate stoichiometry, which hypothetically can also
appear in the chalcogen-deficient material. We considered
various nonstoichiometric binary compounds MyX2(1−y), where
M = Mo and W and X = S, Se, and Te. Mimicking the
experimental situation, the phases were created by adding
vacancies to the pristine structure and optimizing the
geometry. Some of the structures that we studied are shown
in Figure 3. The stability of these phases, which should
naturally depend on the chemical potentials of the atoms, was
evaluated by calculating the formation energies of the
structures. Assuming that the nonstoichiometric phase is
embedded into the pristine stoichiometric phase, the
energetics (formation energy Ef per formula unit) of the

phase MaXb consisting of a transition metal atoms and b
chalcogen atoms was calculated as a function of chalcogen
atom chemical potential μX as

μ= − + −
E

E
a

E
a b
a

(M X )
(MX )

2a b
f 2 X (1)

where E(MaXb) and E(MX2) are the total energies of the
primitive cells of the nonstoichiometric and stoichiometric
phases, respectively. Correspondingly, for any value of μX, the
formation energy Ef of the MX2 phase is zero. Equation 1 is
essentially the formation energy of a defect in the pristine
material normalized to the defect area. We stress that in these
calculations we do not take into account the actual structure of
the interface between the stoichiometric and nonstoichio-
metric phases, assuming that the structure is large enough, so
that the interfaces can be neglected. It can also be used to
assess the energy loss for removing all chalcogen atoms from
the system and forming a pure metal membrane. As the phase
is embedded into the stoichiometric phase, it is assumed that
for any stoichiometry

μ μ μ+ =2M X MX2 (2)

where the value of μM and μX are limited by the lowest-energy
phases.
The formation energies for nonstoichiometric phases and for

pure metal membranes are shown in Figure 4. It is seen that
there are nonstoichiometric phases that are more stable than

Figure 3. Atomic structures of nonstoichiometric phases of binary compounds formed from transition metal (M = Mo, W) and chalcogen (X = S,
Se, Te) atoms, top and side views.
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pure 2D metals. The most stable nonstoichiometric phase from
the simulation is M4X4, with the energy difference between the
hexagonal metal phase and M4X4 being over 1 eV. As evident
from Figure 4, the energy difference between this and the
stoichiometric phase is 0.3−0.6 eV in the metal-rich limit,
which indicates that the phase can potentially be synthesized
or manufactured using an electron beam by sputtering
chalcogen atoms, e.g., by using moderate heating during
irradiation. Another nonstoichiometric phase of interest is
M5X2, which, unlike M4X4, has a hexagonal lattice with a
formation energy comparable to the lowest-energy M4X4 at the
metal-rich end. The phase can be referred to as a corrugated
Mo sheet with attached chalcogen atoms, and it is a likely
candidate for forming domains when chalcogen atoms are
sputtered away by the electron beam.

Although we considered single-layer structures, the vdW
interaction is known to affect the cohesive energies of
nonlayered materials by up to 0.3 eV per atom, especially
when defects are present (for an overview, see ref 40). To
address this issue, we repeated the calculations of the total
energies and geometries of all of the phases of the MoSe
system that we considered with the Tkatchenko−Scheffler
vdW exchange and correlation functional.41 The primitive cell
size of every phase was carefully optimized. The account for
the vdW interaction decreased the energy difference between
the nonstoichiometric phases and MoSe by 0.1−0.3 eV but did
not change the qualitative picture. The geometry of the
systems remained the same, and the Mo membrane was still
corrugated.

Figure 4. Formation energies of nonstoichiometric phases and pure metal membranes embedded into pristine material as functions of chalcogen
atom chemical potentials.

Figure 5. Simulated annular dark field scanning transmission electron microscopy images of the Mo4Se4 and Mo5Se2 phases in comparison to a
pure Mo membrane and MoSe2 at 80 kV. The intensity scale is the same for all of the images.
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To further facilitate a comparison with the experimental
results,7 we simulated STEM images of the phases with the
lowest energies, along with those for a pure Mo membrane and
pristine MoSe2. Figure 5 presents the simulated STEM images
of the Mo4Se4 and Mo5Se2 phases in comparison to a pure Mo
membrane and MoSe2. The intensity scale is the same for all of
the images. Interestingly, the Mo5Se2 has a slightly distorted
hexagonal lattice with a lattice constant of ∼2.7 Å, close to the
experimental result reported in ref 7. On the other hand, the
simulated metallic Mo membrane has a lattice constant of only
2.57 Å. Thus, some areas in the irradiated MoSe2 sheets may
not be a purely metallic phase but one of the mixed phases.
Independently, we also carried out a global minimum search

of nonstoichiometric 2D structures by the evolutionary
algorithm. The simulation yielded the same 2D molybdenum
monoselenide with a distorted puckered honeycomb lattice of
orthorhombic symmetry, Figures 3 and 5c. Such a phase has
lattice parameters a = 5.455 Å and b = 4.449 Å (Pbcm space
group) with one Mo atom (0.402, 0.250, 0.477) and one Se
atom (−0.016, 0.250, 0.425). The dynamical stability of a
predicted monolayer was studied by the phonon calculations,
shown in Figure 6a. One can see no imaginary phonon modes,
Figure 6a, so that even the free-standing structure should be
stable. The presence of a substrate will further stabilize this
phase. The elastic constants of the Mo4Se4 phase were found
to be C11 = 87.1 N/m, C22 = 204.7 N/m, C12 = 46.4 N/m, and
C66 = 53.7 N/m. One elastic constant of uniaxial deformation
(C22) is almost 2 times larger than the corresponding value for
MoSe2 (110.5 N/m), whereas another constant (C11) is
slightly lower.
We further calculated the electronic structure of the Mo4Se4

phase. The PBE band structure of Mo4Se4 is shown in Figure
6b. It is evident that the phase is metallic. We obtained similar
results for other M4X4 systems. The metallic nature of these
compounds was also confirmed by the G0W0 calculations.
To sum up, using first-principles calculations, we demon-

strated that the lowest-energy configuration of a neutral 2D
membrane composed of Mo atoms only is not the hexagonal
one, as previously assumed,8 but the square lattice. The
structure is not flat but develops out-of-plane corrugation.
However, when a finite-size Mo membrane embedded into a
semiconducting MoSe2 material is negatively charged, the
lowest-energy configuration corresponds to the hexagonal
lattice, which has experimentally been observed,7 provided that
indeed no other chemical element (e.g., carbon, oxygen) is
present, as confirmed by EELS. We further showed that the
extra charge also gives rise to increased separations between
the atoms, which may explain the apparent contradiction
between the bond lengths obtained in the calculations and
those experimentally measured in Mo membranes derived

from MoSe2 sheets by sputtering Se atoms using the electron
beam in the scanning TEM.7 We also provide evidence that
other nonstoichiometric 2D phases of MoSe2 and other TMDs
MX2(M = Mo, W; X = S, Se, Te) with low formation energies
can exist. Among these 2D phases, the 2D M4X4 and M5X2
phases are particularly stable, especially in the Mo-rich limit,
which corresponds to the conditions in the TEM experiments.
This indicates that, although the formation of the pure Mo/W
phase may be related to the dynamical effects and preferential
sputtering of chalcogen atoms, it should in principle be
possible to quench the system into this configuration by, e.g.,
moderate heating of the sample during exposure to the
electron beam. The lowest-energy M4X4 phase is metallic,
contrary to the original material, which is a semiconductor.
This potentially opens new avenues for patterning and atomic-
scale engineering of the properties of 2D TMDs with high
miniaturization and integration. As exposure to chalcogen
atoms combined with annealing will likely lead to the
restoration of the original structure, the system can be used
in rewritable electronics.
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Superconductivity in group IV semiconductors is desired for hybrid devices combining both semiconducting
and superconducting properties. Following boron-doped diamond and Si, superconductivity has been observed
in gallium-doped Ge; however, the obtained specimen is in polycrystalline form [Phys. Rev. Lett. 102, 217003
(2009)]. Here we present superconducting single-crystalline Ge hyperdoped with gallium or aluminum by ion
implantation and rear-side flash lamp annealing. The maximum concentration of Al and Ga incorporated into
substitutional positions in Ge is 8 times higher than the equilibrium solid solubility. This corresponds to a
hole concentration above 1021 cm−3. Using density functional theory in the local-density approximation and
pseudopotential plane-wave approach, we show that the superconductivity in p-type Ge is phonon mediated.
According to the ab initio calculations, the critical superconducting temperature for Al- and Ga-doped Ge is in
the range of 0.45 K for 6.25 at.% of dopant concentration, being in qualitative agreement with experimentally
obtained values.

DOI: 10.1103/PhysRevMaterials.3.054802

I. INTRODUCTION

Since the discovery of superconductivity in diamond [1]
with a boron content above the equilibrium solid solubility
(ESS), many studies have been performed to find new “super-
conducting semiconductors.” Such a materials class would en-
able the monolithic integration of quantum and conventional
electronics [2]. Indeed, several groups found superconductiv-
ity, even in the technologically more relevant semiconductors
such as Si [3], Ge [4], or SiC [5], after a heavy hole doping.
A brief introduction into the research field of superconducting
semiconductors was given in recent review articles [6–9].

The term “superconducting semiconductor” is a bit mis-
leading, since in a semiconductor, the carriers necessary for
the Cooper pair condensate freeze out at low temperatures,
and superconductivity is impossible. Therefore, the semicon-
ductor has to be heavily doped above the metal-insulator
transition (MIT). It turned out that an acceptor concentration
in excess of 1 at.% (i.e., above 5×1020 cm−3) is required to
induce the superconductivity in germanium. Such concen-
tration is higher than the ESS of typical acceptors in Ge.
Hyperdoping, however, is difficult to achieve and requires
nonequilibrium doping techniques, such as a high-pressure
high-temperature synthesis [1] or chemical vapor deposition
[8] in the case of diamond, gas immersion laser doping
[3,10,11], and high-fluence ion implantation combined with

*Corresponding author: s.prucnal@hzdr.de

rapid thermal annealing (RTA) or flash lamp annealing (FLA)
[4,12–15] for Si and Ge. Among these doping schemes, ion
implantation followed by FLA is best adopted to the current
semiconductor technology.

Despite advanced nonequilibrium doping techniques, hy-
perdoped semiconductors are in most cases inhomogeneous
materials with dopant concentration fluctuations [16] up to
cluster or nanoprecipitate formation [13]. Moreover, dopant
segregation at grain boundaries in polycrystalline materials
or at interfaces to technologically relevant capping layers is a
next serious problem [17]. There is experimental evidence that
in some semiconductor-acceptor systems, Si:Ga, for example,
amorphous acceptor-rich nanoprecipitates (cGa >20 at.%)
are vital for superconductivity [13]. Granularities of the
superconducting condensates have been also obtained in
boron-doped diamond [18,19]. Such granular superconduc-
tors can be modeled by a random network of Josephson
junctions and exhibit a superconductor-insulator transition
[20], as observed, e.g., in Si:Ga [21,22]. The presence of
the superconductor-insulator transition clearly reveals the in-
homogeneous character of the superconductor. Due to local
superconducting regions, even in the insulating state such
hyperdoped semiconductors demonstrate nonlinear transport
phenomena [22] and anomalous large magnetoresistance [23].

However, for a perfect monolithic integration of super-
conducting nanocircuits in semiconductor devices, a homoge-
neous and single-crystalline structure is desirable. It remains
an unresolved question whether superconducting semicon-
ductor films of sufficient quality can be fabricated at all

2475-9953/2019/3(5)/054802(10) 054802-1 ©2019 American Physical Society
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by today’s top-down selective doping technologies and
which semiconductor-acceptor combination is most promis-
ing. Since the tendency for disorder and cluster formation
by hyperdoping increases with the covalent bond strength of
the semiconductor and decreases with growing acceptor solid
solubility, the Ge:Ga system appears to be favorable compared
to diamond:B and Si:B [14]. Previous studies demonstrated
that conventional implantation doping of Ge with Ga en-
ables a maximum hole concentration of 6.6×1020 cm−3 after
annealing at 450◦C for 1 h [24]. Higher temperatures of
conventional long-term annealing led to Ga clustering. In
order to reduce acceptor diffusion and clustering, FLA in
the millisecond range without layer melting is an appropriate
method [25–28]. With this method hole concentrations up to
1.4×1021 cm−3 and superconductivity at critical temperatures
below 0.5 [4,15] and 2.0 K [29] have been achieved in Ge
layers with about 6 and 8 at.% Ga content, respectively.
Unfortunately, the layers are nanocrystalline [4,15], and the
activation level of the Ga acceptors varies from sample to
sample up to a factor of 2, which is due to the formation
of Ga-rich nanoprecipitates [29]. Single-crystalline Ge:Ga
has been obtained by RTA [14]. However, in this case, a
large amount of the Ga atoms accumulates as an amorphous
film at the SiO2/Ge interface. This interface layer becomes
superconducting below 6 K, which is similar to the critical
temperature of Ga clusters.

In this paper we show that an optimized FLA process can
be used to fabricate single-crystalline, superconducting layers
of hyperdoped p-type Ge. In addition to Ga doping, we also
investigate Al doping. Similar to Ga, Al has high ESS but a
higher diffusivity than Ga and is more difficult to activate.
As shown recently, ion implantation of Al into Ge followed
by conventional thermal annealing results in a maximum hole
concentration of only 1×1020 cm−3 [30]. Here we show that
the maximum carrier concentration in Ga- and Al-implanted
Ge followed by FLA exceeds 1021 cm−3. FLA suppresses
the dopant diffusion and segregation. The recrystallized Ge
is single crystalline with critical temperatures of TC ∼ 0.5K.

Moreover, first-principles investigation of superconductivity
in Al-doped and Ga-doped Ge using ab initio calculations
within the Eliashberg-McMillan theory reveals that the Ga:Al
system behaves similar to a Ge:Ga covalent superconductor,
where the critical temperature can be tuned by the carrier
concentration.

II. EXPERIMENTAL

A. Sample fabrication

N-type (Sb-doped, ρ >10�cm), (100)-oriented Ge wafers
are used as substrates for acceptor implantation in order to
electrically isolate the processed layer from the substrate
by formation of a p-n junction. First, a 30-nm-thick SiO2

cover layer is sputter-deposited to protect the Ge surface
during ion implantation and annealing. Then the wafers are
implanted with Ga or Al ions with different fluencies of 1,
2, and 4×1016 cm−2 and energies of 100 keV for Ga+ and
50 keV for Al+ ions. The implantation energies are chosen
in such a way that the acceptor profiles are similar, with a
maximum acceptor concentration at a depth of 60 nm, as

predicted by the SRIM simulation code [31]. Figure 1(a) shows
the calculated Ga and Al distributions implanted into the
SiO2/Ge wafers for an ion fluence of 2×1016 cm−2. The peak
concentration and the depth distribution of Al and Ga within
Ge are different for the same ion fluence and similar projected
ion range Rp. After implantation, a heavily doped amorphous
surface layer of about 120 nm width with a relatively sharp
interface to the single-crystalline Ge substrate was formed
(see Supplemental Material, Fig. S1a) [15,32]. The presence
of a sharp amorphous/crystalline interface is an important pre-
condition for the explosive solid-phase epitaxy process which
appears during millisecond-range FLA of the implanted
layer [29].

The Al peak concentration is about 6 at.%, whereas the
Ga concentration exceeds 10 at.%. This is due to different
interactions of light (Al) and heavy (Ga) elements with ger-
manium during the ion-implantation process. This is due
to different stopping power and energy loss straggling for
different ions within the solid. For heavier ions the stopping
power and the energy loss straggling are higher, causing a
smaller FWHM of the depth distribution of the implanted ions
and, in consequence, a higher peak concentration for the same
ion fluence.

In order to activate the dopants and recrystallize the im-
planted layer, we have used a strongly nonequilibrium thermal
processing, i.e., flash lamp annealing. Implanted samples were
annealed either from the front side (f-FLA) or from the rear
side (r-FLA) with an energy density deposited to the sample
surface in the range of 50−130 J cm−2. The annealing time
was 3, 6, or 20 ms. The influence of the annealing time on the
recrystallization process of the implanted layer is presented
in Supplemental Material (see Fig. S1b [15,32]). Figure 1(b)
shows the temperature distribution within the implanted layer
after front- and rear-side FLA for 20 ms. The f-FLA leads
to a partial epitaxial regrowth of the implanted layer and
to the formation of polycrystalline hyperdoped Ge at the
surface [15]. Taking into account the wavelength spectrum
of the Xe lamps in the FLA system (300–800 nm) and the
optical properties of Ge, the main part of the flash light is
absorbed by implanted Ge within 50 nm from the surface. This
causes a temperature gradient within the implanted layer. For
a short moment (in the submicrosecond range), the surface is
much hotter than the amorphous/crystalline interface. Also,
the threshold energy needed for crystalline seed nucleation
is lower than the energy needed for the epitaxial regrowth
[33]. Therefore, during f-FLA, the recrystallization of the
implanted layer starts from the surface and a polycrystalline
layer is formed. In order to avoid the formation of such a
polycrystalline layer at the top of implanted Ge, we developed
the rear-side FLA process [28]. In this case, the implanted
sample is annealed from the rear side and the heat is trans-
ferred through the wafer to the implanted surface. Using
r-FLA, the amorphous/crystalline interface is heated first.
Therefore, before the surface temperature reaches the level
needed for crystalline seed nucleation, the whole implanted
layer is recrystallized due to the explosive solid-phase epitaxy
[28]. We have found that using a 400-μm-thick Ge layer the
optimal annealing time for rear-side annealing is 20 ms. RTA
and pulsed laser annealing (PLA) are alternatives to FLA an-
nealing techniques. During RTA, similar to the r-FLA process,
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FIG. 1. The Ga and Al depth distribution in Ge obtained by the SRIM code for an ion-implantation fluence of 2×1016 cm−2 (a) and simulated
temperature distribution at the implanted surface during 20 ms FLA from the front side (f-FLA, black curve) and from the rear side (r-FLA,
red curve) (b).

the implanted layer recrystallizes via solid-phase epitaxy. But
due to much smaller heating rate the recrystallization speed of
the implanted layer is significantly slower than the diffusion
of dopants. As a consequence, the implanted elements with
concentration higher than the solid solubility are only partially
incorporated into the crystal lattice and form clusters. In
contrast to FLA and RTA, during PLA the annealing layer re-
crystallizes via liquid phase epitaxy. The typical pulse length
for PLA is in the nanosecond range, and the total annealing
time is in the range of tens of microseconds. The solidifica-
tion/recrystallization speed observed during PLA is similar to
the explosive solid-phase epitaxy after FLA. But the diffusion
coefficient of dopants in the liquid phase is a few orders
of magnitude higher than in the solids. Hence, during PLA
dopants often diffuse towards the surface and form a dopant-
rich but nonactivated layer. According to our experience, only
the millisecond-range annealing provides enough energy to
activate explosive solid-phase epitaxy, which is crucial for the
formation of single-crystalline hyperdoped germanium.

B. Characterization techniques

The crystallization process of the Al- and Ga-implanted
and annealed samples is studied using Rutherford
backscattering-channeling spectrometry (RBS/C). The
RBS/C measurements are performed on the samples before
and after annealing using the 1.7 MeV He+ beam. To
investigate the microstructural properties of the implanted Ge
layer, cross-sectional bright-field transmission electron
microscopy (TEM) investigations are performed in a
Titan 80-300 (FEI) microscope operated at an accelerating
voltage of 300 kV. High-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) imaging
and spectrum imaging based on energy-dispersive X-ray
spectroscopy (EDXS) are performed at 200 kV with a Talos
F200X microscope equipped with a Super-X EDXS detector
system (FEI). Prior to TEM analysis, the specimen mounted
in a high-visibility low-background holder was placed
for 10 s into a model 1020 Plasma Cleaner (Fischione)

to remove contaminations. The optical properties are
investigated by micro-Raman spectroscopy. The phonon
spectra were obtained in backscattering geometry in the range
of 100−600 cm−1 using a 532-nm Nd:YAG laser with a
liquid-nitrogen-cooled CCD camera.

The concentration of carriers in the implanted and an-
nealed samples was estimated from temperature-dependent
Hall-effect measurements in van der Pauw configuration. The
thickness of the doped layer was extracted from the RBS data
under the assumption that the diffusion of implanted elements
during 20-ms pulse annealing can be neglected. The electrical
properties of the annealed samples are measured at millikelvin
temperatures in a dry dilution refrigerator (Triton 400 by Ox-
ford Instruments), which allows sweeping temperature in the
range from 10 mK to 30 K. Four-probe ac measurements were
taken using the ac lock-in method with an excitation current of
10 nA and frequency 127 Hz. The existence of superconduct-
ing states in hyperdoped p-type Ge was predicted by ab initio
calculations within the Eliashberg/McMillan theory.

III. RESULTS AND DISCUSSION

A. Microstructure

The recrystallization process of ion-implanted and flash-
lamp-annealed Ge is investigated using RBS random (RBS/R)
and channeling (RBS/C) spectrometry. Since Al and Ga are
lighter than Ge, they unfortunately cannot be measured di-
rectly by RBS. However, the ratio between the yields of
the RBS/C and RBS/R spectra (χmin) is a measure of the
crystalline quality of the sample. In our case, χmin for Al- and
Ga-hyperdoped Ge after FLA is in the range of (5 ± 1)% (see
Fig. 5), which is slightly higher than χmin for the virgin Ge.
Moreover, the RBS/C spectra recorded from the as-implanted
samples provide information about the thickness of the amor-
phized layer, which is needed to calculate the carrier density
using Hall-effect measurements.

Figure 2 shows the RBS/R and RBS/C spectra obtained
from the Al-doped sample before and after r-FLA, from
the Ga-doped sample after r-FLA and from virgin Ge. As
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FIG. 2. The RBS/R and RBS/C spectra obtained from Al- and
Ga-hyperdoped Ge. The RBS/C spectrum recorded from virgin Ge is
shown as well. The concentrations of Al and Ga in Ge are at the level
of 2×1021 cm−3.

expected, the RBS/C spectrum obtained from the as-
implanted sample reveals the formation about a 120-nm-thick
amorphous surface layer. The thickness of the amorphous
layer is calculated based on the RBS data using the RUMP

Software. After 20-ms r-FLA with an energy density of
120 J cm−2, the yield of RBS/C spectrum drops down to the
level registered from the virgin Ge wafer. This behavior points
to an epitaxial regrowth of the implanted layer during r-FLA.
Moreover, we can conclude that Al atoms are incorporated
into the lattice of Ge. Taking into account that the solid
solubility of Al in Ge is in the range of 5×1020 cm−3, the
investigated sample contains 4 times more Al in substitutional
positions than the solid solubility limit. Such a gain is only
possible due to the strongly nonequilibrium character of the
process. The absence of significant dechanneling suggests
that the formation of Al clusters is also suppressed by the
millisecond-range r-FLA.

In the case of Ga-hyperdoped Ge after r-FLA, the RBS/C
spectrum also reveals full incorporation of Ga into the Ge
lattice. The yield of the RBS/C spectrum obtained from virgin
Ge and the Ga-doped sample is at the same level, meaning
that the Ga-implanted sample behaves the same way as Al-
doped Ge after r-FLA. In both cases, the ESS limit has been
overcome by 4 times.

In order to clarify the lattice position of Al and Ga
within Ge, we performed particle-induced x-ray emission
(PIXE) spectroscopy in the random and channeling direc-
tion. Figures 3(a) and 3(b) show the PIXE spectra ob-
tained from the Al- and Ga-doped samples, respectively. The
peaks are identified as the characteristic x-ray emissions of
the AlKα (1.78 keV), GaKα (9.27 keV), GeKα (9.85 keV), and
GeKβ (10.98 keV) lines. Since in the PIXE channeling spectra
the AlKα and GaKα intensities drop down to the noise level,
it can be concluded that both Al and Ga atoms are fully
incorporated into Ge lattice sites, even with a concentration
being 4 times higher than the ESS.

More insight into the microstructure is provided by TEM.
Please note that the SiO2 capping layer is still present for
these samples. Figure 4(a) displays a cross-sectional bright-
field TEM image taken from Al-doped Ge after annealing.
In this case, both single dislocations within the implanted
layer and end-of-range defects are detected [34]. Figure 4(b)
shows the Ge, Al, and O distributions based on EDXS analysis
from a representative surface region, as exemplarily marked
by the white square in Fig. 4(a). Aluminum is quite evenly
distributed within Ge, showing only few small agglomerates
over the implantation depth, which is in good agreement with
RBS and PIXE data.

Figures 4(c) and 4(d) show a cross-sectional bright-
field TEM micrograph and the corresponding superimposed
Ge, Ga, and O element distributions obtained from Ga-
hyperdoped Ge. Here, the Ga is completely homogeneously
distributed within the implanted layer. Moreover, in the case
of the Ga-doped sample, even the end-of-range defects are not
detected. For Al as well as Ga, the recrystallized Ge is single-
crystalline. This is in contrast to our previous results, where
front-side flash lamp annealing was used [15]. Applying

FIG. 3. PIXE spectra of Al- (a) and Ga-hyperdoped Ge (b) followed by rear-side FLA for 20 ms.
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FIG. 4. (a), (c) Cross-sectional bright-field TEM images obtained from Al- and Ga-hyperdoped Ge, respectively, (b), (d) superimposed Ge
(green), O (red), and Al or Ga (blue), respectively, element distributions obtained by spectrum imaging analysis based on EDXS in scanning
TEM mode for a representative surface region of each sample, as exemplarily marked by the white square in (a).

f-FLA, the implanted layer is composed of polycrystalline
Ge with Ga clusters and an epitaxial layer which has a
thickness of about 70% of the thickness of the implanted layer.
Using r-FLA, we can fully suppress the formation of poly-
Ge and Ga clusters for dopant concnetrations much above
the ESS.

B. Superconductivity

The established electrical parameters of the studied doped
layers are summarized in Table I. The carrier concentration

was estimated from the Hall-effect measurements. The thick-
ness of the doped layer was determined by RBS measure-
ments. The presented activation efficiency is a ratio between
the total acceptor concentration and the carrier concertation
estimated from the Hall-effect measurement at 3 K. The
presented critical temperatures are taken from Fig. 5. We
find that for diluted hyperdoped Ge the minimum carrier
concentration needed for superconductivity is in the range
of 1×1021 cm−3. If we assume that the superconductivity in
p-type Ge is phonon mediated, for the same doping level the
critical temperature should be slightly higher for Al-doped Ge

TABLE I. Summary of the doping level and carrier concentration in hyperdoped Ge obtained for Al- and Ga-doped samples annealed with
optimized parameters.

Sample Dopant concentration Carrier concentration at 3 K Activation efficiency Critical temperature

Ge:Al ∼6% 10.7×1020 cm−3 44.5% TC ∼ 0.15K
Ge:Ga ∼10% 12.6×1020 cm−3 31.5% TC ∼ 0.45K
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FIG. 5. Temperature dependence of the longitudinal resistance for different samples: (a) low-temperature part of Rxx vs T of superconduct-
ing Ge with 6% Al (a) and Ga (b).

than for the Ga-doped sample due to a stronger phonon cou-
pling. Unfortunately, in hyperdoped Ge it is very challenging
to control the carrier concentration keeping the same dopant
concentration. In fact, for the doping level above the solid
solubility, we are not able to activate 100% of the implanted
element. Therefore experimental verification of theoretical
predictions is very challenging. Here we decided to compare
samples with similar hole concentrations.

It is worthy to note that we are able to show supercon-
ducting Ge hyperdoped with Al. The achieved hole concen-
tration is the highest ever published for Al-doped samples.
Figure 5(a) shows the temperature dependence of resistance
for Al-hyperdoped Ge. The superconducting temperature is
about 150 mK. This is much lower than that predicted by
calculation (TC ∼ 480mK, shown later) but also much below
the critical superconducting temperature for Al thin film or Al
clusters [35]. If we take into account the carrier concentration,
which is roughly half of the Al concentration, the obtained TC

is at a reasonable level. The temperature dependence of the
resistance for the Ga-doped sample is shown in Fig. 5(b). In
Ga-hyperdoped Ge, TC is about 400 mK. Presented critical
temperatures are obtained from samples annealed from the
rear side with a flash energy density of 120 J cm−2. The an-
nealing at lower energy densities is not sufficient to recrystal-
lize the implanted layer (no superconductivity), while anneal-
ing at higher energy densities activates the dopant diffusion
and cluster formation, leading to the superconductivity driven
by metallic clusters (see Supplemental Material Figs. 1(b)
and 2) [15]. Consequently, the fraction of electrically active
dopants, both Al and Ga, in the substitutional position is
much smaller.

C. Model calculations for the electron-phonon coupling

According to the BCS theory the critical temperature of a
homogeneous superconductor grows with increasing electron-
phonon coupling strength and Debye temperature. Theoretical
calculations demonstrate that in homogeneously doped semi-
conductors the critical temperature scales with their hole con-

centration [36,37]. The critical temperature in diamond can
exceed 20 K for a hole concentration of 10%(∼1022 cm−3).
Much lower critical temperatures (<1K) have been predicted
for Si and Ge. We used the supercell technique to model
the hyperdoped Ge. For simulation we have used Ge doped
with Al or Ga with the concentration of 6.25%, corresponding
to the 2×2×2 supercell with one Ge atom substituted by
an Al(Ga) atom. All calculations were performed within the
plane-wave implementation of the local-density approxima-
tion (LDA) [38] to density functional theory (DFT) [38–40]
in the QUANTUM-ESPRESSO package [41]. Norm-conserving
pseudopotentials with a kinetic energy cutoff of 45 Ry were
used to represent electron-ion interactions. The k-point sam-
pling of the Brillouin zone was set to 6× 6× 6 during
the structural relaxation and electronic structure calculations,
while a dense 12×12×12 Monkhorst-Pack grid [32] was
used for the phonon linewidth calculations. Phonon spectra
and electron-phonon coupling constants were calculated using
density functional perturbation theory [42] with a 3×3×1
mesh of q points. For all calculations we have used an opti-
mized lattice constant of Ge supercell of 11.234 Å. The hy-
perdoping of Ge with Al or Ga will lead to a lattice expansion
by 0.2% (11.259 Å for Al-doped Ge) or lattice compression
by 0.1% (11.226 Å for Ga doped Ge), respectively.

Figure 6 shows the electronic structure of Al- and
Ga-hyperdoped Ge. According to our calculations for
the same dopant concentration, the density of states
N (EF ) in Al-hyperdoped Ge (∼2.82 [states/eV/(supercell)])
is slightly higher than in Ga-hyperdoped Ge (∼2.67
[states/eV/(supercell)]). In both cases the hyperdoped Ge is
strongly degenerate, with the Fermi level (EF ) located deep
in the valence band (∼0.67 eV below the top of the valence-
band maximum). The electronic states near the EF of Al- and
Ga-hyperdoped Ge are very similar, and they originate from p
states of Ge and acceptor dopants. The hyperdoped Ge is an
sp3 covalent metal.

In a similar way to the electronic structure of hyperdoped
Ge, we have calculated the phonon band structure of Al-
and Ga-hyperdoped Ge (see Fig. 7). By solid blue circles we
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FIG. 6. The electronic structure of Al- (a) and Ga-hyperdoped (b) Ge with the corresponding total density of electronic states N (EF ).

have marked the highest optical phonons at the � point. In
the case of Al-hyperdoped Ge we have found three optical
T2 modes located at 256, 267, and 364 cm−1 and one A1

optical mode with frequency around 188 cm−1. The strongest
electron-phonon coupling strength λvq at the � point is at
A1 with λvq ∼ 0.16. The triple degeneracy also produces

FIG. 7. Phonon band structure with corresponding phonon DOS for Al-hyperdoped Ge (a) and for Ga-hyperdoped Ge (b). The unit of
phonon DOS (PHDOS) is states/(cm−1×supercell). Blue solid circles indicate the partial electron-phonon coupling strength λvq at the � point.
(c, d) show the Raman spectra obtained from Al- and Ga-hyperdoped Ge, respectively. The Raman spectrum of virgin undoped Ge is shown
for comparison.
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electron-phonon coupling strength of about λvq(q=�) ∼ 0.05 −
0.06. The phonon structure of Ga-hyperdoped Ge is very
similar to Al-hyperdoped Ge. The A1 optical mode should
be located at 187 cm−1, with maximum electron-phonon cou-
pling of about 0.12. The optical T2 modes in Ga-hyperdoped
Ge are located at 254, 259, and 266 cm−1, and the λvq(q=�) is
in the range of 0.04–0.07. The theoretical calculated phonon
structure of hyperdoped Ge was verified using micro-Raman
spectroscopy. The micro-Raman spectra were collected under
532-nm laser excitation, with a laser power of 3.2 mW and
a focal diameter of about 1 μm. Figures 7(c) and 7(d) show
the Raman spectra obtained from Al- and Ga-hyperdoped Ge,
respectively. The transverse-optical phonon mode of Ge-Ge in
intrinsic Ge is located at 300.5 cm−1. After hyperdoping the
TO phonon mode of the Ge-Ge vibrational is shifted down to
288.2 cm−1 for the Al-doped sample and down to 281.9 cm−1

for the Ga-doped Ge. This is very close to the theoretically
predicted values for the high frequency of the zone-center
optical mode in hyperdoped Ge (about 278 cm−1). The shift
of the TO phonon mode in ultrahigh-doped Ge and the peak
asymmetry is due to the phonon softening and the Fano effect
[43–45]. Besides the TO phonon mode we can easily distin-
guish the A1 phonon mode in both samples. The measured
peak position of the A1 mode located at about 188 cm−1

fits well to the theoretically predicted phonon energy using
density of states (DOS) calculation.

Due to the fact that the T2 phonon mode positions are close
to the strongest zone-center TO phonon mode it is difficult to
distinguish them. But in the case of Al-hyperdoped Ge, the
T2 mode at 364 cm−1 is well visible [see Fig. 7(c)]. In Ga-
hyperdoped Ge all three T2 modes are overlapped with the TO
phonon mode. Next we analyze the electron-phonon coupling.
Figures 8(a) and 8(b) show the Eliashberg spectral function
and the integrated electron-phonon coupling constant λ(ω).
The total λ calculated for Al- and Ga-doped Ge are similar
and equal to 0.355 and 0.350, respectively. The calculated
logarithmic phonon frequency ωlog is about 243.6 K for Al-
doped Ge and about 245.1 K for Ga-doped Ge, which is much
smaller than the ωlog in other group IV superconductors—
for example, about 700 K for Si:B and about 1287 K for
boron-doped diamond [45]. Finally, we have calculated the
superconducting critical temperature for both samples. We
found that the expected TC for Al-doped Ge should be slightly
higher than that for the Ga-doped sample, mainly due to
slightly higher phonon-carrier coupling. The TC for Ge:Al is
0.48 K and for the Ge:Ga system the TC should be about
0.43 K. According to our calculation(s), the superconductivity
in diluted p-type hyperdoped Ge should be phonon mediated.

Note that there is significant discrepancy between calcu-
lated TC and the experimental values shown in Table I. The
theoretical calculation cannot take into account all phenomena
which may exist in real samples. In fact, we have a Gaussian
distribution of the implanted elements introducing a kind of
inhomogeneity into the doped layer which is not accounted for
in our calculations and modeling. Next, although the thermal
treatment is very short and we were not able to detect big
metallic clusters within the implanted Ge layer, we cannot
exclude the formation of Ga clusters with a diameter below
the resolution limit of our TEM system. Moreover, the ef-

FIG. 8. The total and projected Eliashberg spectral function
[α2F(ω)] for Al-hyperdoped Ge (a) and for Ga-hyperdoped Ge
(b). The red dashed curves represent the integrated electron-phonon
coupling constant λ (ω).

fective carrier concentration is lower than the nominal dopant
concentration, which is not taken into account for simulation.

IV. CONCLUSIONS

We have fabricated single-crystalline Al- and Ga-doped
superconducting Ge where the diffusion and clustering of
dopants are suppressed by utilization of strongly nonequilib-
rium thermal processing. Using rear-side FLA, the implanted
Ge layers recrystallize epitaxially due to the explosive solid-
phase epitaxy. The theoretically predicted critical tempera-
tures qualitatively agree with experimental values. With fur-
ther optimizing dopant concentrations and annealing parame-
ters, our work will pave the way for monolithic integration of
superconducting nanocircuits in semiconductor devices.
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[11] C. Marcenat, J. Kačmarčík, R. Piquerel, P. Achatz, G. Prudon,
C. Dubois, B. Gautier, J. C. Dupuy, E. Bustarret, L. Ortega
et al., Low-temperature transition to a superconducting phase
in boron-doped silicon films grown on (001)-oriented silicon
wafers, Phys. Rev. B 81, 020501(R) (2010).

[12] A. Grockowiak, T. Klein, E. Bustarret, J. Kačmarčík, C. Dubois,
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We present the generation of whispering gallery magnons with unprecedented high wave vectors via
nonlinear 3-magnon scattering in a μm-sized magnetic Ni81Fe19 disc which is in the vortex state. These
modes exhibit a strong localization at the perimeter of the disc and practically zero amplitude in an
extended area around the vortex core. They originate from the splitting of the fundamental radial magnon
modes, which can be resonantly excited in a vortex texture by an out-of-plane microwave field. We shed
light on the basics of this nonlinear scattering mechanism from an experimental and theoretical point of
view. Using Brillouin light scattering microscopy, we investigated the frequency and power dependence
of the 3-magnon splitting. The spatially resolved mode profiles give evidence for the localization at the
boundaries of the disc and allow for a direct determination of the modes wave number.

DOI: 10.1103/PhysRevLett.122.097202

One of the most fascinating topics in current quantum
physics are hybridized systems, in which different quantum
resonators are strongly coupled. Prominent examples are
circular cavities that allow the coupling of optical whisper-
ing gallery modes [1–5] to microwave cavities [6] or
magnetic resonances [7–10]. Whispering gallery modes
play a special role in this endeavor because of their high
quality factor and strong localization, which ultimately
increases the overlap of the wave functions of quantum
particles in hybridized systems. In optomagnonics the
hybridization with magnons, the collective quantum exci-
tations of the electron spins in a magnetically ordered
material, is of particular interest because magnons can take
over two functionalities: due to their collective nature they
are robust and can serve as a quantum memory [11] and,
moreover, they can act as a wavelength converter between
microwave and terahertz photons [9]. However, the obser-
vation of whispering gallery magnons has not yet been
achieved due to the lack of efficient excitation schemes for
magnons with large wave vectors in a circular geometry. To
tackle this problem, we studied nonlinear 3-magnon scat-
tering [12–15] as a means to generate whispering gallery
magnons. This Letter discusses the basics of this nonlinear
mechanism in a confined, circular geometry from an
experimental and theoretical point of view.
Whispering gallery magnons are eigenmodes in systems

with rotational symmetry. This not only applies to the

geometry of the magnetic element but also to the mag-
netization texture therein. For that reason, we study a
Ni81Fe19 disc that inherently exhibits a magnetic vortex
structure [16–20]. The red arrows in Fig. 1(a) schematically
depict the generic features of such a vortex in a 50-nm thick
Ni81Fe19 disc with 5.1 μm diameter: the magnetic moments
curl in plane along circular lines around the vortex core, a
nanoscopic region in the center of the disc where the
magnetization tilts out of plane. According to this rotational
symmetry, the magnon eigenmodes in a vortex are char-
acterized by mode numbers (n, m), with n ¼ 0; 1; 2;…
counting the number of nodes across the disc radius and
m ¼ 0;�1;�2;… counting the number of nodes in azi-
muthal direction over half the disc [21,22].
Other than commonly known waves, like sound, water,

or electromagnetic waves, magnons exhibit a strongly
anisotropic dispersion relation in in-plane magnetized thin
films [23]. In a vortex, this results in increasing (decreas-
ing) mode energies for increasing n (m) as shown by our
analytic calculations in Fig. 1(b). An introduction to these
calculations is given in the Supplemental Material [24],
which includes Refs. [20,22,25–29]. The four exemplary
intensity profiles for the eigenmodes (0,0), (0,10), (0,20),
and (0,30), that are shown in Fig. 1(c), reveal the character
of whispering gallery magnons: the larger m, the more the
magnon intensity is pushed toward the perimeter of the
disc. This can be understood intuitively by the reduction of
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exchange energy: Leaving an extended area around the
vortex core with zero amplitude avoids a strong tilt of
neighboring spins close to the vortex core and, therefore,
reduces the total energy.
Even though magnon spectra in magnetic vortices have

been intensively studied in the past [20,21,30,31], magnons
with large azimuthal wave vectors have not yet been
measured experimentally and were only observed in micro-
magnetic simulations [32]. The challenge to generate such
magnons and, thereby, to reach out to whispering gallery
magnons is finding an efficient excitation mechanism.
Here, we tackle this problem via nonlinear 3-magnon
scattering. In this process, one magnon splits in two
magnons under conservation of energy and momentum.
The rotational symmetry of the vortex texture implies
specific selection rules for the scattering process which
we will describe in context with the experimental data.
In order to selectively excite magnetization dynamics,

we apply microwave currents to an Ω-shaped gold antenna
that encloses the vortex [Fig. 1(a)]. Inside the Ω loop,
a spatially uniform magnetic field is generated that is

oriented perpendicularly to the disc as shown in
Fig. 1(d). The rotational symmetry of this magnetic field
prohibits direct coupling to magnons withm ≠ 0. However,
because of the small diameter of the antenna, strong
magnetic fields can be generated so that these magnons
can be indirectly excited in the nonlinear regime via
multimagnon scattering processes.
We track these nonlinear processes by measuring mag-

non spectra as a function of the applied microwave
frequency using Brillouin light scattering (BLS) micros-
copy [33]. We would like to emphasize that even though
the system is driven with one particular microwave fre-
quency, the BLS technique allows us to detect the dynamic
magnetic response in a broad frequency range. In
Figs. 2(a)–2(c) we plot the BLS spectra measured between
2 and 11 GHz (y axis) for each excitation frequency (x axis)
at microwave powers of 1, 10, and 200 mW. The magnon
intensity is encoded using the same logarithmic scale
shown as an inset in Fig. 2(a).
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FIG. 2. (a)–(c) BLS spectra for excitation frequencies f0
between 2 and 10 GHz and excitation powers of 1, 10, and
200 mW, respectively. The diagonal dashed lines indicate the
directly excited magnetic oscillations at fBLS ¼ f0. The solid
lines indicate frequencies measured at half the excitation fre-
quency fBLS ¼ f0=2. At 10 and 200 mW, off-diagonal signals
associated with multimagnon scattering processes are detected.
(d) Black data show the BLS intensity integrated in 800-MHz
wide windows around the direct excitation for 1, 10, 50, 100, and
200 mW (bottom to top). At 1 mW, the intensity integrated for
excitation frequencies between 7 and 10 GHz was multiplied
by a factor of 6 to better visualize the resonances of the higher
order radial modes. Blue (red) data show the intensities of
the split modes integrated in 1.4-GHz wide windows around
f1 ¼ f0=2þ δf (f2 ¼ f0=2 − δf) with δf ¼ 800 MHz.
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FIG. 1. (a) A Ni81Fe19 disc with 50 nm thickness and 5.1 μm
diameter is patterned inside an Ω-shaped Au antenna (for
fabrication details please see Supplemental Material [24]). Red
arrows depict the magnetization configuration of the magnetic
vortex structure and the blue lines represent the dynamic
magnetic field generated by the loop-shaped microwave antenna.
(b) Analytical calculation of the magnon mode frequencies as a
function of the radial and azimuthal mode numbers n, m (see
Supplemental Material [24]). Black dots show experimental
results. (c) Four exemplary mode profiles resulting from ana-
lytical calculations. The larger m, the more pronounced the
character of the whispering gallery magnons is revealed. (d) COM-

SOL simulation of the z component of exciting magnetic field h
generated by the Ω-shaped antenna. The dashed circle indicates
the size and position of the disc.
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At the lowest microwave power of 1 mW [Fig. 2(a)],
magnons are excited in the linear regime, which is
corroborated by the fact that magnons are only observed
at the BLS frequency that matches the applied microwave
frequency fBLS ¼ f0. Hence, the measured intensities
strictly follow the diagonal, dashed line. Four distinct
resonances emerge at 5.55, 7.40, 8.75, and 9.65 GHz,
which we identify as the well-known first four radial modes
[21,34] by spatially resolved BLS microscopy [insets in
Fig. 2(a)].
At a power of 10 mW [Fig. 2(b)], the excitation field is

strong enough to generate magnons in the nonlinear
regime. Hence, we observe strong off-diagonal signals that
appear at BLS frequencies symmetrically spaced around
half the excitation frequency f0=2 (straight line with slope
0.5). These satellite peaks are the result of 3-magnon
splitting processes. In order to conserve energy the
initial magnon with frequency f0 splits in two magnons
with frequencies f1 ¼ f0=2 − δf and f2 ¼ f0=2þ δf.
Moreover, the rotational symmetry of the vortex requires
conservation of the momentum component in azimuthal
direction. For an initial magnon with m ¼ 0 this implies
that the split modes have azimuthal mode numbers with the
same modulus but opposite sign: m1 ¼ −m2. Our analytic
calculations further show that the split modes must not
share the same radial index, i.e., n1 ≠ n2 (see Supplemental
Material [24]). All three selection rules drastically restrict
the possible scattering channels within the discrete eigen-
mode spectrum of the vortex [see Fig. 1(b)].
Besides the magnons with frequencies f1 and f2, we

observe integer multiples thereof. We attribute these signals
to higher harmonics giving evidence to large amplitude
resonances with a high q factor.
At the maximum applied microwave power of 200 mW,

the number of off-diagonal signals increases further
[Fig. 2(c)]. Especially, for excitation frequencies between
6 and 7 GHz, we do not just measure two satellite peaks
with frequencies f1 and f2 but a total number of ten
additional modes. Their presence is attributed to avalanche
processes of higher order multimagnon scattering. Their
frequencies are given by combinations of the three initial
magnons, e.g., 2f1, 2f2, f0 þ f1. Furthermore, the sig-
nificant line broadening of the directly excited mode and
of the split modes in the frequency range between 5.3 and
5.9 GHz can be attributed to 4-magnon scattering [35].
However, this Letter solely focusses on the study of the
initial 3-magnon scattering processes which dominate in
intensity due to the lower threshold compared to 4-magnon
scattering.
To better illustrate the power dependence of the observed

modes, we plot the BLS intensity integrated over different
frequency windows as a function of the excitation fre-
quency in Fig. 2(d). The black data resemble the BLS
intensity of the direct excitation. With increasing power the
initially sharp resonances become broader and show the

characteristic nonlinear foldover to higher frequencies
[36,37]. The red and blue data in Fig. 2(d) show the
intensities of the split modes below (red data) and above
f0=2 (blue data), which overall broaden in range and shift
to higher frequencies with increasing power.
To further elucidate the threshold character of the

3-magnon splitting, we plot a more detailed power
dependence of the magnon intensities in Fig. 3(a) for
f0 ¼ 6.1 GHz. While the mode at 6.1 GHz can be observed
over a large power range, it is evident that the split modes
f1 and f2 only appear above a certain threshold power.
Furthermore, we observe a pronounced frequency shift of
these two split modes with increasing microwave power.
For a quantitative comparison, we integrate the BLS
intensity in narrow frequency windows around the directly
and indirectly excited modes, respectively, and plot them in
Fig. 3(b). The double logarithmic scale reveals the linear
growth of the direct excitation at 6.1 GHz starting at
0.1 mW. However, the intensities of the satellite peaks
around f1 ¼ 2.65 and f2 ¼ 3.48 GHz abruptly increase
above 10 mW which demonstrates the threshold character
of the splitting process.
In order to reveal the spatial structure of the modes that

are generated via 3-magnon scattering, we simultaneously
mapped the profiles of the directly excited mode and the
split modes [Figs. 4(c)–4(g)]. Additionally, we compare the
experimental results for the mode with highest intensity at
6.1 GHz with micromagnetic simulations [38] in Fig. 4(b)
(for details please see Supplemental Material [24]). The
first thing to realize is that all of the split modes show a
clear azimuthal character and confirm the analytical cal-
culations and the selection rules imposed by the rotational
symmetry: pure radial modes with (n; 0) split in modes with
m1 ¼ −m2 and n1 ≠ n2. As far as possible, we label the
modes according to their radial and azimuthal mode
numbers (n, m). We resolve azimuthal mode numbers up
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FIG. 3. (a) Power dependence of the BLS spectra excited at
f0 ¼ 6.1 GHz. (b) BLS intensity integrated in 800-MHz wide
frequency windows around the BLS frequencies f0 ¼ 6.1,
f1 ¼ 2.64, and f2 ¼ 3.46 GHz as a function of the microwave
power. In the double-logarithmic plot, the direct excitation at
6.1 GHz follows a linear trend, whereas the split modes at 3.46
and 2.64 GHz show a clear threshold behavior.
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to 14, to our knowledge the first time to observe vortex
modes with such high m. For higher n, an unambiguous
identification of the modes was not possible due to limited
spatial resolution. However, the radial mode number can
still be retrieved by comparing the measured frequencies to
the analytic calculations in Fig. 1(b). We counted the
azimuthal mode numbers and plotted the measured
frequencies as black dots in the calculated spectrum.
From this comparison we then determined the radial mode
numbers (red labels in Fig. 4).
In Fig. 4(b), the micromagnetic simulation for excitation

at 6.1 GHz reveals the splitting into magnons with the same
mode numbers as in the experiment, however, with slightly
different frequencies of the split modes. This frequency
shift may be attributed to variations in the strength and
symmetry of the exciting magnetic field or the material
parameters. For further details please see Supplemental
Material [24].
Note that we only measure stationary mode profiles

which implies that, essentially, all split modes are a
superposition of modes counterpropagating in the azimu-
thal direction. Therefore, we conclude that the two splitting
processes ðn0; 0Þ → ðn1; mÞ þ ðn2;−mÞ and ðn0; 0Þ →
ðn1;−mÞ þ ðn2; mÞ occur with equal probability.
It is remarkable, that the higher m for a given n, the

stronger the mode is localized at the outer circumference
of the disc, resembling intensity distributions of optical
whispering gallery modes [39]. The most beautiful example
in our dataset is the intensity distribution of the split mode

(0,12) at the excitation frequency 6.1 GHz shown in
Fig. 3(c). It exhibits a distinct area with zero intensity in
its center, similar to higher order optical whispering
gallery modes.
In summary, we shed light on the nonlinear conversion

of magnons in a confined system with rotational symmetry
by analyzing their spectral and spatial characteristics.
We showed how this mechanism can be utilized to
generate magnons with unprecedented high azimuthal
wave vectors and localization at the discs’ perimeter,
which resembles the character of whispering gallery
modes. The underlying 3-magnon scattering processes
are highly tunable regarding the frequency and spatial
distribution of the split modes. We believe that this
advanced control of the generation of whispering gallery
magnons is a missing link towards the realization of an
efficient hybridization of magnons and other quantum
particles as found in circular optical cavities and mechani-
cal quantum resonators.

The authors acknowledge fruitful discussions with
S. V. Kusminskiy. Financial support by the Deutsche
Forschungsgemeinschaft is gratefully acknowledged
within program SCHU2922/1-1. K. S. acknowledges
funding within the Helmholtz Postdoc Programme.
Samples were fabricated at the Nanofabrication Facilities
(NanoFaRo) at the Institute of Ion Beam Physics and
Materials Research at HZDR. We thank B. Scheumann
for film deposition and L. Bischoff for the thickness
measurement.

7.20 GHz
(1,0)

4.43 GHz
(1,4)

2.72 GHz
(0,4)

7.06 GHz
(5,14)

4.91 GHz
(2,14)

11.62 GHz
(n,0)(f)(a)

5.1 m

5.00 GHz
(2,9)

3.85 GHz
(1,9)

8.90 GHz
(2,0)

5.52 GHz
(2,5)

2.77 GHz
(0,5)

8.30 GHz
(2,0)

−δf

+δf

f2

f1

(b) (d) (e) (g)6.10 GHz
(0,0)

3.46 GHz
(1,12)

2.64 GHz
(0,12)

min max
BLS intensity

f0

f0/2

3.55 GHz
(1,12)

2.55 GHz
(0,12)

(c)

min max
mode intensity

6.10 GHz
(0,0)

FIG. 4. (a) Energy levels for 3-magnon splitting. (b) Micromagnetic simulation of the 3-magnon splitting for the excitation frequency
of 6.1 GHz. (c)–(g) Spatial intensity distributions of the direct excitation (upper line) as well as the split modes (middle and bottom line)
for various excitation frequencies. Each magnon mode has been identified regarding its radial and azimuthal order (n, m). Numbers in
red are derived by comparing the experimentally detected magnon frequency to analytical calculations [Fig. 1(b)].

PHYSICAL REVIEW LETTERS 122, 097202 (2019)

097202-4

Annual Report IIM 2019, HZDR-109 59



*Corresponding author.
k.schultheiss@hzdr.de

[1] G. Mie, Ann. Phys. (N.Y.) 330, 377 (1908).
[2] P. Debye, Ann. Phys. (N.Y.) 335, 755 (1909).
[3] L. Rayleigh, Philos. Mag. 27, 100 (1914).
[4] A. N. Oraevsky, Quantum Electron. 32, 377 (2002).
[5] K. J. Vahala, Nature (London) 424, 839 (2003).
[6] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,

and Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014).
[7] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R.

Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura,
and Y. Nakamura, Phys. Rev. Lett. 116, 223601 (2016).

[8] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J.
Ferguson, Phys. Rev. Lett. 117, 133602 (2016).

[9] S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Phys. Rev.
A 94, 033821 (2016).

[10] J. Graf, H. Pfeifer, F. Marquardt, and S. V. Kusminskiy,
Phys. Rev. B 98, 241406 (2018).

[11] X. Y. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and
H. X. Tang, Nat. Commun. 6, 8914 (2015).

[12] H. Suhl, J. Phys. Chem. Solids 1, 209 (1957).
[13] C. Ordonez-Romero, B. A. Kalinikos, P. Krivosik, W. Tong,

P. Kabos, and C. E. Patton, Phys. Rev. B 79, 144428 (2009).
[14] H. Schultheiss et al., Phys. Rev. Lett. 103, 157202 (2009).
[15] R. E. Camley, Phys. Rev. B 89, 214402 (2014).
[16] T. Shinjo, T. Okuno, R. Hassdorf, K. Shigeto, and T. Ono,

Science 289, 930 (2000).
[17] V. Novosad, M. Grimsditch, K. Y. Guslienko, P. Vavassori,

Y. Otani, and S. D. Bader, Phys. Rev. B 66, 052407 (2002).
[18] K. Y. Guslienko and V. Novosad, J. Appl. Phys. 96, 4451

(2004).
[19] V. Novosad, F. Y. Fradin, P. E. Roy, K. Buchanan, K. Y.

Guslienko, and S. D. Bader, Phys. Rev. B 72, 024455
(2005).

[20] K. Y. Guslienko, A. N. Slavin, V. Tiberkevich, and S.-K.
Kim, Phys. Rev. Lett. 101, 247203 (2008).

[21] M. Buess, R. Höllinger, T. Haug, K. Perzlmaier, U. Krey, D.
Pescia, M. R. Scheinfein, D. Weiss, and C. H. Back, Phys.
Rev. Lett. 93, 077207 (2004).

[22] M. Buess, T. P. J. Knowles, R. Höllinger, T. Haug, U. Krey,
D. Weiss, D. Pescia, M. R. Scheinfein, and C. H. Back,
Phys. Rev. B 71, 104415 (2005).

[23] B. A. Kalinikos and A. N. Slavin, J. Phys. C 19, 7013
(1986).

[24] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.122.097202 for addi-
tional information on sample fabrication, the experimental
technique of Brillouin light scattering and an introduction to
the theoretical calculations.

[25] V. S. L’vov, Wave Turbulence Under Parametric Excitation
(Springer-Verlag, New York, 1994).

[26] P. Krivosik and C. E. Patton, Phys. Rev. B 82, 184428
(2010).

[27] K. Livesey, Nonlinear Behavior in Metallic Thin Films and
Nanostructures, in Handbook of Surface Science, edited
by R. E. Camley, Z. Celinski, and R. L. Stamps (Elsevier,
North-Holland, 2015), Vol. 5.

[28] A. Yu. Galkin, B. A. Ivanov, and C. E. Zaspel, Phys. Rev. B
74, 144419 (2006).

[29] K. Y. Guslienko and A. N. Slavin, J. Appl. Phys. 87, 6337
(2000).

[30] R. Zivieri and F. Nizzoli, Phys. Rev. B 71, 014411
(2005).

[31] A. A. Awad, G. R. Aranda, D. Dieleman, K. Y. Guslienko,
G. N. Kakazei, B. A. Ivanov, and F. G. Aliev, Appl. Phys.
Lett. 97, 132501 (2010).

[32] B. Taurel, T. Valet, V. V. Naletov, N. Vukadinovic, G.
deLoubens, and O. Klein, Phys. Rev. B 93, 184427
(2016).

[33] T. Sebastian, K. Schultheiss, B. Obry, B. Hillebrands, and H.
Schultheiss, Front. Phys. 3, 35 (2015).

[34] K. Vogt, O. Sukhostavets, H. Schultheiss, B. Obry, P. Pirro,
A. A. Serga, T. Sebastian, J. Gonzalez, K. Y. Guslienko, and
B. Hillebrands, Phys. Rev. B 84, 174401 (2011).

[35] H. Schultheiss, K. Vogt, and B. Hillebrands, Phys. Rev. B
86, 054414 (2012).

[36] H. Suhl, J. Appl. Phys. 31, 935 (1960).
[37] P. A. Praveen Janantha, B. Kalinikos, and M. Wu, Phys.

Rev. B 95, 064422 (2017).
[38] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F.

Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4,
107133 (2014).

[39] J. J. Yang, M. Huang, J. Yu, and Y. Z. Lan, Europhys. Lett.
96, 57003 (2011).

PHYSICAL REVIEW LETTERS 122, 097202 (2019)

097202-5

60 Selected Publications



ARTICLES
https://doi.org/10.1038/s41565-019-0383-4

1Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. 2Universidad Técnica Federico Santa María, Valparaíso, Chile. 3Center for the Development 

of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile. 4Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany. 5Leibniz Institut 

für Photonische Technologien, Jena, Germany. 6Universidad de Aysén, Coyhaique, Chile. 7Oakland University, Rochester, MI, USA. 8Paul Scherrer Institut, 

Villigen, PSI, Switzerland. 9Technische Universität Dresden, Dresden, Germany. 10Present address: Uppsala Universitet, Uppsala, Sweden.  

*e-mail: v.sluka@hzdr.de; s.wintz@hzdr.de

Spin waves, also referred to as magnons, are the elementary 
excitations of the order parameter in ferromagnetic materi-
als (Fig. 1a)1. They can be used in a similar manner to elec-

trons in CMOS circuitry to transmit information, but with lower 
losses. Therefore, they are currently attracting a lot of interest as 
possible information carriers in alternative computing schemes2–5. 
Another substantial advantage of spin wave technology is the 
fact that, in the gigahertz range, magnon wavelengths are several 
orders of magnitude shorter than those of electromagnetic waves6. 
Accordingly, significant device miniaturization can be achieved for 
applications where the wavelength imposes a critical constraint on 
the device footprint. For such purposes it will be crucial to utilise 
spin waves with wavelengths in the submicrometre range, where 
both magnetostatic and exchange effects are relevant (dipole-
exchange waves)3. While surface acoustic waves are already pres-
ent as short-wavelength signal carriers in today’s communication 
technology, spin waves offer a superior scalability of wave excita-
tion and propagation at frequencies above 2 GHz as well as a much 
wider frequency tunability7,8.

Two challenging aspects of building a magnonic computer are 
the generation of short-wavelength magnons9–17 and the construc-
tion of suitable waveguides for spin wave transport17–25. A standard 
method to coherently generate spin waves employs the localized 
Oersted fields from alternating electric currents flowing in metallic 
antennas that are patterned adjacent to a magnetic medium. The 
smallest excitable wavelengths that are possible using this method, 

however, are approximately equal to the patterning sizes involved 
(Supplementary Section 3). In terms of nanopatterning and micro-
wave impedance matching, it is therefore highly challenging to 
efficiently scale such an antenna-based excitation to nanoscale 
wavelengths. While similar restrictions apply from the patterning 
size, spin-transfer torques are an alternative suitable source for spin 
wave excitation26–29, with the possibility of steering spin waves with 
external magnetic bias fields29. More recently, it has also been shown 
that spin waves can be generated using the internal fields of non-
uniform spin textures11–16,30–33, yet direct observations are limited 
to wavelengths >1 μm, apart from those in refs. 17,34,35. Reference 34 
demonstrates the emission of high-amplitude nanoscale spin waves 
from a pair of stacked vortex cores36 driven by an alternating mag-
netic field37,38. However, in the geometry of ref. 34, where a point-like 
vortex core source is radiating spin waves into a two-dimensional 
(2D) propagation medium, spin waves originating from a vortex 
core and travelling outwards radially experience not only Gilbert 
damping, but also a purely geometric reduction of amplitude pro-
portional to the inverse square root of the distance from the source, 
as shown schematically in Fig. 1b. Furthermore, it has been sug-
gested that magnetic domain walls could be harnessed to guide spin 
waves across the magnonic chip5,17–21,39–41. In particular, it has been 
shown that domain walls can host localized modes excited by alter-
nating magnetic fields19. In ref. 19, the lateral position of the excited 
magnetization amplitudes could be well controlled by tuning the 
lateral domain wall position, but these modes quickly decayed 
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Volker Sluka� �1*, Tobias Schneider1, Rodolfo A. Gallardo2,3, Attila Kákay1, Markus Weigand4, 
Tobias Warnatz1,10, Roland Mattheis5, Alejandro Roldán-Molina6, Pedro Landeros� �2,3, 
Vasil Tiberkevich7, Andrei Slavin7, Gisela Schütz4, Artur Erbe� �1, Alina Deac1, Jürgen Lindner1, 
Jörg Raabe� �8, Jürgen Fassbender1,9 and Sebastian Wintz� �1,8*

Spin waves offer intriguing perspectives for computing and signal processing, because their damping can be lower than the 
ohmic losses in conventional complementary metal–oxide–semiconductor (CMOS) circuits. Magnetic domain walls show con-
siderable potential as magnonic waveguides for on-chip control of the spatial extent and propagation of spin waves. However, 
low-loss guidance of spin waves with nanoscale wavelengths and around angled tracks remains to be shown. Here, we demon-
strate spin wave control using natural anisotropic features of magnetic order in an interlayer exchange-coupled ferromagnetic 
bilayer. We employ scanning transmission X-ray microscopy to image the generation of spin waves and their propagation across 
distances exceeding multiples of the wavelength. Spin waves propagate in extended planar geometries as well as along straight 
or curved one-dimensional domain walls. We observe wavelengths between 1�μm and 150�nm, with excitation frequencies rang-
ing from 250�MHz to 3�GHz. Our results show routes towards the practical implementation of magnonic waveguides in the form 
of domain walls in future spin wave logic and computational circuits.
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along the domain wall coordinate with increasing distance from the 
microwave antenna within subwavelength length scales.

These key issues—short-wavelength spin wave generation 
and spin wave guidance—are the points we address in this work, 
where we make use of naturally formed anisotropic spin textures. 
First, we demonstrate the excitation and propagation of 2D planar 
spin waves (Fig. 1c) excited by the oscillation of straight domain 
walls. These excitations can travel distances spanning multiples 
of the wavelength. Second, we observe excitation and propaga-
tion of spin wave modes confined to quasi-1D natural waveguides 
(straight or curved) formed by domain walls embedded in a 2D 
host medium (Fig. 1d).

Anisotropic spin textures
We patterned Ni81Fe19/Ru/Co40Fe40B20 multilayers (44.9/0.8/46.6 nm 
thickness) into disk- and square-shaped elements with lateral sizes 
of several micrometres (Fig. 2a). Each ferromagnetic layer exhibits 
an in-plane uniaxial anisotropy. The Ru interlayer causes antifer-
romagnetic coupling between the two ferromagnetic layers42 (see 
Methods for further details).

The magnetic ground-state configuration stabilized in this sys-
tem is a pair of stacked vortices, with opposite vorticity due to the 
antiferromagnetic interlayer exchange coupling. The influence 
of the CoFeB uniaxial anisotropy leads to a significant distortion 
of the vortex magnetization distribution in both magnetic layers. 
The result in each layer is a state of two homogeneously in-plane 
magnetized domains with opposite magnetizations. These domains 
are separated by a narrow, partially perpendicularly oriented, 180° 
domain wall that contains the vortex cores and spans the lateral 
extension of the disks. These magnetic configurations are presented 
in the scanning transmission X-ray microscopy (STXM) images in 
Fig. 2b,c, which display magnetic information about the in-plane 
(Fig. 2b) and out-of plane (Fig. 2c) components of the individual 
layers, where the technique provides a lateral resolution of about 
25 nm. As Fig. 2c indicates, the out-of-plane magnetization com-
ponents of the respective layers couple ferromagnetically to each 
other via their stray field. In particular, this is true for the polariza-
tions of the vortex cores. Micromagnetic simulations confirm this 
and reveal that the domain wall formed in the sample is a mixture 
of Néel and Bloch types of domain wall43, where the in-plane com-
ponents couple antiferromagnetically across the Ru interlayer, as in 

the domains. Figure 2d presents a schematic top view of the domain 
wall structure in the CoFeB layer, showing the mixed Bloch and 
Néel components. Figure 2e shows a schematic cross-section across 
the domain wall, revealing that the out-of-plane magnetization 
components in the domain wall follow a flux-closing distribution 
between the two layers.

Nanoscale spin wave generation
Spin waves can be excited in such anisotropic spin textures by 
applying an alternating magnetic field, as shown in Fig. 3. The cor-
responding measurements were made by means of time-resolved 
(TR) STXM imaging, allowing for a stroboscopic time resolution 
of ~100 ps. Figure 3a presents a snapshot of the magnetic excita-
tions at an Oersted field frequency of 1.11 GHz, taken at the Ni 
absorption edge, displaying the out-of-plane contrast. Plane spin 
waves are visible, with wave fronts parallel to the domain wall and 
propagating away from the domain wall towards the rim of the 
elliptical element, as indicated by the green arrow. The oscillating 
Oersted-field in-plane component is oriented along the minor axis 
of the ellipse, perpendicular to the domain wall. The main effect of 
the Oersted field is to excite the dynamics of the domain wall, and 
the excited domain wall acts as a confined perpendicular source for 
the observed spin waves15,17,33. In more detail, by acting on the full 
sample volume, the field excites a non-resonant antiphase width 
oscillation of the walls in the two different layers, which is coherent 
over the wall length, causing highly localized out-of-plane torques 
in the wall vicinity. In this way, spin waves are essentially excited via 
a linear and coherent coupling of the discrete wall mode to the spin 
wave continuum, similar to the situation with vortex core-driven 
spin waves, as reported earlier34,35.

The time-periodic nature of the waves allows us to capture the 
wave motion at discrete, equi-spaced phases in each scanned pixel, 
and to compose the recorded data into movie-like arrangements, 
which show the propagation of these spin excitations (see videos 
in the Supplementary Information). A comparison of the absorp-
tion data taken along the green arrow in Fig. 3a at different time 
slices yields the wavelength of the wave and its speed of propaga-
tion. Three of these time slices are shown in Fig. 3b. Notably, the 
spin wave amplitude does not visibly decrease across the distance 
of 2 μm, corresponding to about 7.5 times the wavelength. Taking 
into account a set of measurements for the given frequency of 
1.11 GHz, we obtain a wavelength of 286 ± 20 nm and a phase veloc-
ity of 317 ± 22 m s−1. Increasing the excitation frequency to 1.46 GHz 
results in a similar wave pattern, but with shorter wavelength  
(Fig. 3c). The corresponding values for the wavelength and phase 
velocity are 211 ± 15 nm and 307 ± 22 m s−1, respectively. By compar-
ison with the contrast of the vortex core, the spin wave amplitudes 
are estimated to reach a precession angle of more than 5°, which can 
be considered as very high when compared to standard spin wave 
excitation techniques (cf. ref. 44, which reports an angle of 1.5°).

Around the vortex centre, as shown in the magnified image in 
Fig. 3d, in addition to the plane waves generated by the oscillating 
wall, there are radial wave fronts that arise from the motion of the 
vortex core34. As expected, these radially symmetric waves decay 
faster than the plane waves excited by the domain wall. This differ-
ence is a consequence of the relative dimensionality of the source 
and medium: while the plane waves are excited by a 1D source (the 
domain wall), for the radial waves the source is 0D (the vortex core). 
Nevertheless, as the two wave forms are excited simultaneously, 
interference patterns arise (Fig. 3d).

We can excite planar spin waves for a broad range of frequencies 
up to 3 GHz. One can expect this process to scale to higher frequen-
cies if the magnetization gradient of the exciting source (domain 
wall or vortex core) is enhanced as for domain walls in systems 
with strong perpendicular magnetic anisotropy or if the spin wave 
dispersion relation is tuned to longer wavelengths by modifying 
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Fig. 1 | Spin waves in different geometries. a, Schematic of a spin wave 

of wavelength λ propagating along the direction indicated by the black 

arrow. The green arrows refer to the precessional motion performed by the 

magnetization vectors (orange arrows). b–d, Three different geometries of 

spin wave propagation explored in this Article. The magenta and orange 

fields denote the geometric dimensions of the source and propagation 

medium, respectively. In b, spin wave emission is from a point source. In 

this case, the dimensions of the medium and source differ by two. As a 

result, in addition to the exponential decay caused by Gilbert damping, 

there is a geometric decay of the spin wave amplitude. In c, plane-wave-like 

spin wave propagation is shown. Similar to b, the waveguide medium is 2D, 

yet the source has dimension one. In d, a 0D source excites a 1D medium 

(a domain wall).
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the magnetic layer stack. A qualitatively different effect, however, 
appears when going to rather low excitation frequencies, as shown 
in Fig. 4, which displays excitations at 0.52 GHz and 0.26 GHz  
(Fig. 4a,b, respectively). At these low frequencies, no visible excita-
tions exist in the domains, yet the data show spin waves propagating 
confined to the domain wall in the directions away from the vortex 
cores. The wavelength can again be controlled by tuning the excita-
tion frequency. Note that there is a directional asymmetry in the 
spin wave emission at 0.52 GHz, which, however, can be attributed 
to sample imperfections in the exciting core region, as simulations 
indicate a symmetric emission pattern (Supplementary Video 7). 
Irrespective of this, the wave amplitude is still significant, even after 
a propagation distance extending from the vortex core to the rim of 
the ellipse. This situation is again a consequence of a dimensionality 
difference of one between source and medium. For waves propagating  

along the domain wall, the source is of dimension zero, yet the 
propagation medium is effectively 1D. Hence, geometrical decay of 
the amplitude is avoided, making the domain wall act as a low-loss 
waveguide (Supplementary Video 4) of propagating spin waves in 
the domain walls. The confined waves excited here can be consid-
ered a bilayer analogue of the spin wave mode predicted for a single 
domain wall40. The coherent domain wall resonance (or infinite 
wavelength k = 0) case of such a bilayer has been theoretically stud-
ied45 (cf. Supplementary Section 2).

To shed light on the underlying physics, we followed a twofold 
strategy. First, both phenomena—the excitation and propagation 
of planar spin waves in the domain and 1D waves confined to the 
domain wall—were investigated and qualitatively confirmed with 
micromagnetic simulations. To achieve this, the experimental static 
magnetization distribution was reproduced before excitation by an 
a.c. magnetic field. Supplementary Video 7 shows the time-depen-
dent perpendicular magnetization of a simulated ellipse yielding a 
qualitative confirmation of the gapless 1D spin wave mode in the 
domain wall. To obtain details of the dispersion relation for the pla-
nar waves in the domains within a reasonable computation time, the 
system was modelled by two continuous, homogeneously magne-
tized coupled layers (see Methods for further details).

2D plane spin wave dispersion
In addition to the simulations, we developed a theory (see 
Supplementary Information for in-depth technical details) for 
the propagation of spin waves in two exchange-coupled extended 
ferromagnetic films. The theory allows to compute the spin wave 
dispersion relation in coupled films whose thicknesses exceed the 
respective material’s exchange length. This is done by considering 
each magnetic layer as being composed of several coupled thin lay-
ers, for which the thin film approximation holds (for details see 
Methods). In Fig. 5, the measured spin wave dispersion relations 
f(k = 2π/λ) (where f denotes frequency, k is the wavenumber and 
λ is the wavelength) for waves in the domains and in the domain 
walls are combined with the analytical and micromagnetic simu-
lation results. We first consider the planar waves propagating 
through the domains. The theoretical result is found to depend 
sensitively on the CoFeB in-plane uniaxial anisotropy Ku(CoFeB) 
and the interlayer exchange coupling J. For J = −0.1 mJ m−2 and 
Ku(CoFeB) = 3 kJ m−3, we find good agreement with the experimen-
tal data. The elevated value of Ku(CoFeB) is reasonable, because 
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Fig. 2 | Sample layout and magnetic configuration. a, The ferromagnetic element is patterned out of an interlayer-exchange-coupled bilayer system 

consisting of a NiFe layer and a CoFeB layer, coupled antiferromagnetically by a Ru interlayer. b,c, High-resolution X-ray magnetic circular dichroism 

(XMCD) STXM images, showing that the magnetic configuration is a pair of stacked vortices, with antiferromagnetically coupled in-plane magnetizations. 

In b, the contrast represents the in-plane magnetic component along the long axis of the elliptic element (orange arrows indicate the magnetic 

orientation). In c, the out-of-plane magnetic contrast is displayed. We find that an additional anisotropy with the easy axis along the long axis of the elliptic 

element leads to an anisotropic deformation of the vortex patterns, resulting in the formation of a domain wall, which is also visible both in the in-plane 

and out-of-plane contrast images. Micromagnetic simulations reveal that this domain wall has both Néel and Bloch character, as shown schematically in 

d, where the orange arrows indicate the magnetic orientation. e, Cross-section of the domain wall profile, which can be imagined as taken along the blue 

dashed line in d, illustrating the in- and out-of-plane components of the layer magnetizations in and around the domain wall.
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image of the region indicated in the centre of c.
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we expect the CoFeB to react sensitively to strain exerted by the 
patterned waveguide microstructure onto the elliptical element46. 
Using the same parameters as in the theory, we also computed the 
dispersion using micromagnetic simulations (grey dots in Fig. 5), 
which were found to quantitatively reproduce the results from both 
the experiment and analytic calculations. Note that the antiparallel 
bilayer system considered here can in principle host two separate 
spin wave modes of acoustic and optical character (Supplementary 
Section 2). However, because the optical mode resides at much 
higher frequencies and is not accessed by our experiments, we only 
consider the acoustic mode in the following.

A striking feature of the acoustic plane wave dispersion is the 
existence of a local minimum at low k around 5 rad μm−1 and, 
accordingly, a frequency gap, below which no spin wave excitations 
are possible. The local minimum at some finite value of the wave-
vector in Fig. 5 results from a combination of the non-reciprocity 
induced by the dipolar coupling between the two antiferromagneti-
cally coupled magnetic layers34,47 (Supplementary Section 2) and the 
uniaxial magnetic anisotropy. Namely, when the anisotropy is zero, 
the collective dispersion in Damon–Eshbach geometry (k⊥M0)48 
has a minimum of zero frequency at k = 0, while at finite anisotro-
pies this minimum is shifted to finite values of both wavevector and 
frequency. Such k-shifting of the dispersion minimum is somewhat 
analogous to that induced by the Dzyaloshinskii–Moriya interac-
tion, for example for ferromagnetic–heavy metal interfaces, where 
the minimum of the dispersion is also shifted49. Note that we only 
observe the slow branch (k ≥ +5 rad μm−1) of the non-reciprocal dis-
persion relation in our experiment because the wavelengths of the 
fast branch waves for the given frequencies are of the order of the 
sample size or even exceed it (cf. Supplementary Section 2). At the 
same time the spin wave amplitudes predicted for the fast branch 
are much lower. Hence, spin wave edge reflections are not notice-
able in the experiment.

1D spin waves along domain walls
Our experimental observations of selective excitation and propaga-
tion of spin waves in the domain wall can be explained based on 
the existence of the frequency gap discussed above. The red circles 
in Fig. 5 display the dispersion relation of the measured spin waves 
in the domain wall. In contrast to the planar waves in the domains, 
the waves confined to the wall exhibit an almost linear dispersion, 
which runs below its plane wave counterpart and, when extrapo-
lated towards zero, intercepts the y axis close to f = 0. Thus, when 
tuning the excitation frequency to values inside the gap, no propa-
gating magnons are excited in the domains, and only the energeti-
cally lower modes existing in the wall are populated. The existence 
or absence of a gap in the domain and domain wall, respectively, 
are explained by the Goldstone theorem50, which states that a sys-
tem exhibiting a continuous symmetry spontaneously broken by 
the ground state has a gapless mode. In the case of spin waves in 
the domains, the corresponding system comprises the two coupled 

disks. Here, the continuous symmetry is compromised by the uni-
axial anisotropy and, accordingly, the planar spin wave dispersion 
relation exhibits a gap. In the case of the waves confined to the 
domain wall, there exists a continuous translational symmetry that 
gives rise to a gapless mode. The presence of defects and the finite 
size of the sample, in principle, break this symmetry, but the result-
ing gap is too small to be observed in the experiment.

The idea of using domain walls as waveguides is intriguing, 
and Fig. 6 shows that the above described phenomenon indeed 
extends to cases where the walls are curved, that is, lead ‘around 
the corner’. Neither is the concept restricted to continuous wave 
excitation. Figure 6a displays the static magnetization configuration 
(out-of-plane contrast) of a domain wall of the same type as above, 
but curved towards the right-hand rim of the magnetic element. 
Figure 6b–d displays snapshots of the excitation following a field 
pulse. Due to the width of the spectral composition of the pulse, 
spin waves are excited inside and above the frequency gap. The 
resulting plane wavepacket traverses the domains in the direction 
away from the wall and makes it easy to optically distinguish the 
domain wall wave from the remainder of the excitations. At 11.1 ns 
after the pulse, the wall wavepacket has reached the region in front 
of the turn (Fig. 6c); 2.5 ns later the wavepacket has travelled around 
the corner. Remarkably, even after the turn, the wavepacket main-
tains a detectable amplitude. While the spatial distribution of the 
domain wall in our experiment is solely a consequence of both dipo-
lar sample confinement fields and magnetostrictive anisotropies, it 
was shown that further control of the domain wall position can be 
achieved, for example by exchange bias patterning20,24, ferroelectric 
coupling13,32 or external magnetic fields19.

Conclusions
We have addressed several key aspects of magnonic computing 
by exploiting magnetic anisotropy. The first aspect is related to 
energy and the signal range. We have demonstrated that textures 
in a magnetization distribution, like domain walls and vortex cores, 
can serve as sources for the generation of short-wavelength, dipole-
exchange spin waves of a directional nature, that is, planar waves 
in magnetic domains and waves confined to domain walls. These 
are, due to their geometry, not subject to a reduction of amplitude 

10 20 30 40 50 60
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Experiment: waves in domains
Experiment: waves in domain wall
Theory
Simulation

F
re

qu
en

cy
 (

G
H

z)

k (rad μm–1)

10 1 0.5 0.3 0.2 0.15 0.12

λ (μm)

Fig. 5 | Spin wave dispersion relations. From the experiment, we obtain 

the dispersion relations for spin waves propagating in the domains (full 

green diamonds) and waves confined to the domain wall (red dots) with 

wavevectors k�=�2π/λ. The error bars correspond to the uncertainty in the 

wavelength determination. In addition, we show the plane wave dispersions 

calculated using our model (blue continuous line) and micromagnetic 

simulations (grey dots), which are in good agreement.

NiFe 0.52 GHz

a b
NiFe 0.26 GHz

7.5 μm

Fig. 4 | Spin waves in the domain wall. a,b, Spin waves confined to the 

domain wall (TR-STXM of the NiFe layer magnetization out-of-plane 

component) excited at 0.52 and 0.26�GHz, respectively, with accordingly 

changing wavelengths.

NATURE NANOTECHNOLOGY | VOL 14 | APRIL 2019 | 328–333 | www.nature.com/naturenanotechnology 331

64 Selected Publications



ARTICLES NATURE NANOTECHNOLOGY

due to the geometric dilution of the energy flow. Such waves mini-
mize the losses occurring during propagation. Indeed, we found 
that the resulting excitations can travel distances easily spanning 
several micrometres, that is, significantly exceeding multiples of 
the nanoscale wavelengths—a necessary condition, for example, 
for magnon interference-based applications. The second aspect is 
to identify possible waveguides for magnonic chips. Here, we have 
shown that domain walls can serve as such waveguides, combining 
several useful properties. First, due to their inherent symmetry, and 
consequently their near-gapless dispersion relation, spin waves can 
be excited selectively in these structures. In addition, we have shown 
that spin wavepackets can travel along angled domain walls while 
largely maintaining their amplitude. Such a possibility of angled sig-
nal guidance is vital for chip design, and therefore our result may 
enable new solutions to the development of magnonic circuits.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41565-019-0383-4.
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Methods
Sample fabrication. Ni81Fe19/Ru/Co40Fe40B20/Al multilayers were deposited by 
magnetron sputtering on X-ray transparent silicon nitride membrane substrates 
of 200 nm thickness. The 5-nm-thick Al layer is used as capping for oxidation 
protection. From transmission electron microscopy (TEM) measurements, the 
NiFe and CoFeB thicknesses were determined to be 44.9 and 46.6 nm, respectively. 
The two ferromagnetic layers are subject to antiferromagnetic interlayer exchange 
coupling, mediated by the Ru layer (0.8 nm nominal thickness)42, as indicated by 
hard axis magnetization reversal measured by the magneto-optical Kerr effect 
(MOKE) on extended multilayer films51. MOKE measurements performed on 
corresponding single-layer films of NiFe and CoFeB showed that these films exhibit 
colinear uniaxial anisotropies. The respective values for NiFe and CoFeB are 
0.2 kJ m−3 and 1.1 kJ m−3. However, a significantly higher uniaxial anisotropy value 
for CoFeB of about 3 kJ m−3 is needed in order to reproduce the experimentally 
found static magnetization distribution by micromagnetic simulations.

This elevated value for the in-plane uniaxial anisotropy in CoFeB can be 
attributed to strain, which in our case is caused by the contact with the waveguide. 
In fact, CoFeB is known for its sensitivity to strain, and the orientation of the 
experimentally observed magnetic pattern with respect to the waveguide is 
consistent with this interpretation46. The microelements were patterned by electron 
beam lithography (EBL) and consecutive ion beam etching. Following an initial 
oxygen plasma treatment for adhesive purposes, a negative resist (MA-N 2910) was 
spun onto the multilayer films. In a second step, the microelements were exposed 
by EBL. The samples were then developed for 300 s in MA-D 525 and rinsed in 
deionized water. Finally, the samples were exposed to an argon ion beam at two 
different angles (85° and 5°) to physically etch the magnetic microelements out of 
the continuous films. The remaining resist was removed by acetone and a second 
oxygen plasma treatment. For magnetic field excitation, a copper strip of 200 nm 
thickness was fabricated on top of the microelements by EBL, electron beam 
evaporation deposition and liftoff processing34, resulting in a patterned microstrip 
5 μm in width. The estimated Oersted field arising from a 1 mA electric current 
flowing through such a strip is about μ0H = 4π × 10−2 mT.

Time-resolved STXM. Synchrotron STXM52 was used to image the magnetic 
orientation in the multilayer microelements. Here, a monochromatic X-ray 
beam is focused onto the sample by means of a diffractive zone plate. The 
locally transmitted X-ray intensity is measured by a single-pixel detector, so 
raster scanning the sample provides a 2D absorption image of the sample with 
approximately 25 nm lateral resolution. Using circularly polarized X-rays allows 
XMCD53 to be exploited, thus obtaining a magnetic contrast. As XMCD only 
occurs relevantly at the element-specific resonant absorption edges, the magnetic 
signal from both ferromagnetic layers, NiFe and CoFeB, can be separated by 
using X-rays of the corresponding L3 energies, Ni L3 ~853 eV and Co L3 ~778 eV, 
respectively. On the other hand, a collective signal from both layers can be 
collected from the Fe L3 edge at ~708 eV because both layers contain Fe. The 
acquired magnetic contrast scales with the projection of the magnetic orientation 
m = M/M on the direction of photon propagation. Hence, in normal incidence, our 
STXM set-up is sensitive to the perpendicular magnetization component, while 
an inclined sample mounting also allows for detecting in-plane magnetization 
components at the same time.

Time-resolved STXM was used to stroboscopically image the magnetization 
dynamics of the multilayer microelements. This method utilizes the specific time 
structure of the incident X-rays, which comprises pulses with a 2 ns repetition 
rate and ~100 ps effective pulse length. Each incoming probe event (photon 
transmitted or not transmitted) is routed after every pulse to a periodic counting 
register of a field programmable gate array. Here, the number of registers (Q) sets 
the maximum non-stroboscopic observation period (Q × 2 ns), while the number 
of excitation repetitions within this period sets the nominal time resolution as 
well as the excitation frequency in the case of a continuous sinusoidal excitation. 
The excitation current was monitored via −20 dB pick-off tees, both in front and 
behind the sample’s signal line.

Theoretical model. We developed a theory for the calculation of spin wave dispersion 
relations in two extended interlayer exchange-coupled ferromagnetic layers.

The core of the theory is described in detail in the Supplementary Information. 
It considers spin wave modes in thin magnetic films, where the magnetization 
along the coordinate perpendicular to the film plane can be considered 
homogeneous. The case of thicker films, as in the experiment, is accounted for by 
splitting each ferromagnetic layer into a number N of thin films of equal thickness, 
so that for each of these films the thin film approximation holds. The N thin films 
of each layer are then coupled to each other by an effective ferromagnetic intralayer 
exchange coupling, whose strength is determined by estimating the energy of 
a magnetization distribution subject to homogeneous torsion and by requiring 
consistency with the continuum limit. The theory thus enables us to quickly 

compute dispersion relations for spin waves in the interlayer exchange-coupled 
bilayer system with ferromagnetic layers whose thicknesses exceed the exchange 
lengths of the respective material.

Micromagnetic simulations. Time integration of the Landau–Lifshitz–Gilbert54,55 
equation was carried out using the MuMax3 code56 for a spatially discretized, 
interacting lattice. The simulations were performed to compute the spin wave 
dispersion relations in the coupled layer system. The ferromagnetic layers are 
homogeneously magnetized and the dispersion relations are calculated in a thin 
film approach. Therefore, the system was discretized into (4096, 16, 115) (x,y,z) 
cells and periodic boundary conditions were applied along the y direction, which 
corresponds to the direction of equilibrium magnetization. The thickness of the 
individual layers and the spacer were chosen according to TEM measurements. 
This resulted in a cell size along the z axis of 0.8 nm. The material parameters  
used in the micromagnetic simulations are as follows. For NiFe, the respective 
values of saturation magnetization, exchange stiffness and uniaxial in-plane 
anisotropy are Ms

Py = 800 kA m−1, Axc
Py = 7.5 pJ m−1 (ref. 57) and Ku

Py = 200 J m−3.  
For the CoFeB layer, we used Ms

CoFeB = 1,250 kA m−1, Axc
CoFeB = 12 pJ m−1 (ref. 58) 

and Ku
CoFeB = 3,000 J m−3. The interlayer exchange coupling is J = −0.1 mJ m−2. The 

Gilbert damping constants α for CoFeB and NiFe were chosen to be 0.008 and 0.01, 
respectively. To prevent reflection of spin waves from the edges, the damping was 
increased linearly to 0.065 for both layers.

An out-of-plane sinusoidal excitation field with a fixed frequency was applied 
in a 100-nm-wide region in the centre of the system. After the system reached 
dynamic equilibrium, the magnetization configuration was stored. To extract 
the wave number for each frequency a spatial fast-Fourier transform along the x 
direction of the system was performed. The corresponding dispersion relations are 
shown in Fig. 5 as grey full dots and are in good agreement with the results from 
the model calculations. Additional simulations were performed to compare the 
effects of oscillatory magnetic fields applied in-plane and out-of-plane, in each case 
perpendicular to the magnetization. The simulations clearly show that the bilayer 
system is more susceptible to out-of-plane field perturbations. This result can be 
understood taking into account the fact that the excited collective mode exhibits an 
in-phase oscillation of the perpendicular, yet anti-phase oscillation of the in-plane 
magnetization component (acoustic mode), and thus couples more efficiently to 
driving fields oriented perpendicular to the sample plane. There exists another 
type of collective mode in the system (optical mode), which exhibits an in-phase 
oscillation of the in-plane component; however, this mode resides at higher 
frequency values than the measured ones.

Due to the absence of domain walls, the thin film approach above cannot 
reproduce the observed 1D spin-wave dispersion within the walls and the 
emission of planar waves from them. To gain insight into these phenomena an 
elliptical bilayer with short and long axes of 2.16 μm and 3.24 μm, respectively, 
was simulated at a discretization of 648 × 432 × 115 cells. The material parameters 
were chosen to be the same as for the thin film approach, but for the slightly 
modified constants Axc

Py = 10.5 pJ m−1, Axc
CoFeB = 13 pJ m−1, Ku

CoFeB = 5 kJ m−3 and 
J = −0.3 mJ m−2. To simulate the excitation of spin wave dynamics a spatially 
homogeneous sinc(t) pulse with a cutoff frequency of 10 GHz was utilized. To 
obtain the dynamic response the magnetization data was Fourier-transformed and 
filtered afterwards to extract the desired frequency.

Data availability
The data that support the plots within this paper and other findings of this study 
are available from the corresponding authors upon reasonable request.
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User facilities and services 

Ion Beam Center (IBC) 

The Ion Beam Center (IBC) at HZDR combines various machines (electrostatic accelerators, ion 

implanters, low-energy and focused ion beam systems) into a unique facility used for ion beam 

modification and ion beam analysis of materials. The available energy range spans from a few eV to 

60 MeV with a respective interaction depth in solids between 0.1 nm to 10 µm. In addition to standard 

broad beams also focused (down to 1 nm) and highly-charged (charge state up to 45+) ion beams are 

available. In combination with an allocated ion beam experiment, users can also profit from structural 

analysis (electron microscopy and spectroscopy, X-ray scattering techniques) and sample or device 

processing under clean-room conditions. At the 6 MV tandem accelerator, the IBC operates the 

DREAMS (DREsden AMS = accelerator mass spectrometry) facility, which is used for the determination 

of long-lived radionuclides, like 7,10Be, 26Al, 35Cl, 41Ca, 129I, and others. A schematic overview of the IBC 

including the description of the main beam lines and experimental stations is given on page 75 of this 

Annual Report. In 2019, about 17.000 beam time hours were delivered for about 340 users from 

23 countries worldwide performing experiments at IBC or using the capabilities for ion beam services. 

 

 

 

The IBC has provided ion beam technology as a user and competence center for ion beam applications 

for more than 30 years. With respect to user beam time hours, the IBC is internationally leading and 

has been supported by numerous national and European grants and by industry. 

The research activities cover both ion beam modification and ion beam analysis (IBA). 

The operation of IBC is accompanied by a strong in-house research at the affiliated host “Institute of 

Ion Beam Physics and Materials Research”, both in experiment and theory. Furthermore, the IBC 

strongly supports the commercial exploitation of ion beam technology of partners from industry, which 

is essential for materials science applications. For ion beam services, the HZDR Innovation GmbH 

(spin-off of the HZDR) – www.hzdr-innovation.de – provides a direct and fast access to the IBC facilities 

based on individual contracts. 

Recently, new ion beam tools and end-stations have been commissioned which will attract new 

users by state-of-the-art experimental instrumentation. The basically upgraded ion microprobe station 

at the 3 MV machine is now in routine and user-friendly operation mode, delivering the possibility to 

use – in parallel or sequentially – several IBA techniques with a spatial resolution of about 3 µm. An ion 

microscope ORION NanoFab (He/Ne ions, 10 – 40 keV) provides unique possibilities for surface 

http://www.hzdr-innovation.de/
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imaging, nano-fabrication, and for the first time, elemental analysis based on ion beam techniques. The 

cluster tool at the 6 MV accelerator allows in-situ deposition and analysis investigations at temperatures 

of up to 800 °C. Recently, first instruments for the new low-energy ions nano-engineering laboratory 

have been commissioned, including the installation of a 100 kV accelerator, a medium-energy ion 

scattering (MEIS) setup, and a new low-energy electron microscope (LEEM) aiming to study low-energy 

ion interactions at surfaces.  

IBC activities are efficiently integrated into various Helmholtz programmes within the research field 

“Matter”, but also in the Helmholtz cross-programme activities “Mineral Resources”, “Materials 

Research for Energy Technologies”, and “Helmholtz Energy Materials Foundry”. Since 2013, the IBC 

has been recognized as a large-scale facility within the “BMBF Verbundforschung” promoting long-term 

collaborations with universities. In addition, as of 2019 the IBC is coordinating the EU Integrated 

Infrastructure Initiative (I3) project RADIATE, which provides trans-national access to the largest ion 

beam centers in Europe (www.ionbeamcenters.eu). 

Following the rules of a European and national user facility, access for scientific experiments to IBC 

is provided on the basis of a proposal procedure (www.hzdr.de/IBC) via the common HZDR user facility 

portal HZDR-GATE (gate.hzdr.de), and for RADIATE via www.ionbeamcenters.eu. IBC users from EU 

countries are eligible to receive support through the RADIATE initiative. Due to the availability of 

multiple machines and versatile instrumentation, IBC proposals can be submitted continuously. The 

scientific quality of the proposals is evaluated and ranked by an external international User Selection 

Panel. For successfully evaluated proposals, users get free access to IBC facilities for their 

experiments. The use of the IBC facilities includes the scientific and technical support during planning, 

execution and evaluation of the experiments. For AMS samples preparation, two chemical laboratories 

are available. 

For more detailed information, please contact Dr. Stefan Facsko (s.facsko@hzdr.de) or 

Dr. Johannes von Borany (j.v.borany@hzdr.de), and visit the IBC webpage: www.hzdr.de/IBC. 

https://www.ionbeamcenters.eu/
http://www.hzdr.de/IBC
https://gate.hzdr.de/
https://www.ionbeamcenters.eu/
mailto:s.facsko@hzdr.de
mailto:j.v.borany@hzdr.de
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Free Electron Laser FELBE 

FELBE is an acronym for the free-electron laser (FEL) at the Electron Linear accelerator with high 

Brilliance and low Emittance (ELBE) located at the Helmholtz-Zentrum Dresden-Rossendorf. The heart 

of ELBE is a superconducting linear accelerator operating in continuous-wave (cw) mode with a pulse 

repetition rate of 13 MHz. The electron beam (40 MeV, 1 mA max.) is guided to several laboratories 

where secondary beams (particle and electromagnetic) are generated. Two free-electron lasers (U37-

FEL and U100-FEL) produce intense, coherent electromagnetic radiation in the mid and far infrared, 

which is tunable over a 

wide wavelength range 

(5 –250 µm) by changing 

the electron energy or the 

undulator magnetic field. 

Main parameters of the 

infrared radiation produced 

by FELBE are as follows: 

Wavelength  5 – 40 µm 

18 – 250 µm 

FEL with undulator U37 

FEL with undulator U100 

Pulse energy 0.01 – 2 µJ depends on wavelength 

Pulse length 1 – 25 ps depends on wavelength 

Repetition rate 13 MHz 3 modes:  cw  
                 macropulsed (> 100 µs, < 25 Hz) 
                 single pulsed (Hz … kHz) 

In addition, there is the THz beamline TELBE that is 

run by the Institute of Radiation Physics. TELBE delivers 

high-power pulses (up to 10 J) in the low THz range 

(0.1 to 1.5 THz) at a repetition rate of 100 kHz. ELBE is 

a user facility and applications for beam time can be 

submitted twice a year, typically by April 15 and 

October 15. FELBE and TELBE users from EU countries 

are eligible to receive support through the HORIZON 

2020 Integrated Infrastructure Initiative (I3) 

CALIPSOplus (Convenient Access to Light Sources 

Open to Innovation, Science and to the World) which 

started in May 2017. 

 Typical applications are picosecond pump-probe 

spectroscopy (also in combination with several other 

femtosecond lasers, which are synchronized to the 

FEL), near-field microscopy, and nonlinear optics. The 

FELBE facility also serves as a far-infrared source for 

experiments at the Dresden High Magnetic Field 

Laboratory (HLD) involving pulsed magnetic fields up to 

70 T. 

The statistics shows that the FEL used 1104 hours beam time of the ELBE accelerator. This 

corresponds to 20 % of total beam time, which is again distributed among internal and external users. 

For further information, please contact Prof. Manfred Helm (m.helm@hzdr.de) or visit the FELBE 

webpage www.hzdr.de/FELBE. 

mailto:m.helm@hzdr.de
http://www.hzdr.de/FELBE


74  Experimental equipment 

 

 

Experimental equipment 

Accelerators, ion implanters, and other ion processing tools 

Van de Graaff Accelerator (VdG) 2 MV TuR Dresden, DE 

Tandetron Accelerator (T1) 3 MV HVEE, NL 

Tandetron Accelerator (T2) 6 MV HVEE, NL 

Low-Energy Ion Implanter 0.1 – 40 kV Danfysik, DK 

Low-Energy Ion Platform 20 – 130 kV HVEE, NL 

High-Energy Ion Implanter 20 – 500 kV HVEE, NL 

Mass-Separated Focused Ion Beam (FIB) 
(15 nm, variable ions) 

10 – 30 keV 
>10 A/cm2 

Orsay Physics, FR 

ORION NanoFab FIB Tool 
(including GIS and Nanopatterning, RBS, 
SIMS) 

He, Ne ions, 
10 – 35 kV, 

Resolution < 2 nm 

Carl Zeiss Microscopy, 
DE 

Highly-Charged Ion Facility 25 eV – 6 keV  Q 
Q = 1 … 40 (Xe) 

DREEBIT, DE; 
 PREVAC, PL 

Surface Modifications by Low-Energy Ion 
Irradiation  

200 – 1200 eV Home-built 

UHV Ion Irradiation (Ar, He, etc.) 0 – 5 kV 

Scan 10  10 mm2 

Cremer, DE; VG, USA 

Ion beam analysis (IBA) 

A wide variety of advanced IBA techniques are available at the MV accelerators (see figure). 

RBS  Rutherford Backscattering Spectrometry 
(A1), (A2), (5), 

(9), (11), (14) 

VdG, T1, T2, 
HIM 

RBS/C RBS – Channeling (A1) VdG 

Liquid-
RBS 

Liquid Rutherford Backscattering 
Spectrometry 

(A2) VdG 

MEIS Medium Energy Ion Scattering MEIS  

ERDA Elastic Recoil Detection Analysis (2), (9) T2 

PIXE Particle-Induced X-ray Emission (A1), (A2), (5), (14) VdG, T1, T2 

PIGE Particle-Induced gamma Emission (5), (14) T1, T2 

NRA Nuclear Reaction Analysis (1), (14) T1, T2 

NMP Nuclear Microprobe (14) T1 

AMS Accelerator Mass Spectrometry (B2) T2 

 (focused to long-lived radionuclides: 7Be, 10Be, 26Al, 36Cl, 41Ca, 129I) 

 
Some stations are equipped with additional process facilities enabling in-situ IBA investigations during 

ion irradiation, sputtering, deposition, annealing, investigations at solid-liquid interfaces, etc. 
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Schematic overview of the HZDR Ion Beam Center 

Other particle-based analytical techniques 

SEM Scanning Electron Microscope (S4800 II) 1 – 30 keV 
+ EDX 

Hitachi, JP 

TEM Transmission Electron Microscope 
(Titan 80-300 with Image Corrector) 

80 – 300 keV 
+ EDX, EELS 

FEI, NL 

TEM Transmission Electron Microscope 
(Talos F200X) 

20 – 200 keV 
+ SuperX EDX 

FEI, NL 

FIB/SEM Focused Ion/Electron Cross Beam 
(NVision 40 with Elphy Plus Litho)  

0.5 – 30 keV 
+ EDX, EBSD 

Carl Zeiss 
Microscopy, DE 

AES Auger Electron Spectroscopy + SAM, SEM, XPS, 
EDX, CL 

Scienta Omicron, 
DE 

LEEM Low-Energy Electron Microscope 
(Spec-LEEM-III) 

0 eV – 4.5 keV 
Resolution < 6 nm 

+ AES 

Elmitec, DE 
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Photon-based analytical techniques 

XRD/XRR X-Ray Diffractometers 

θ-θ Powder D8 
θ-2θ 4-Circle D5005 
θ-θ 4-Circle Empyrean 
θ-2θ 4+2-Circle SEIFERT XRD3003-HR 

Cu-K  

Bruker, DE 
Siemens, DE 

PANalytical, NL 
General Electric, US 

SE Angle Dependent Spectroscopic 
Ellipsometry 

250 – 1700 nm Woollam, US 

UV-Vis Solid Spec 3700 DUV 190 – 3300 nm Shimadzu, JP 

FTIR Fourier-Transform Infrared Spectrometer 50 – 15000 cm-1 Bruker, DE 

 Ti:Sapphire Femtosecond Laser 78 MHz Spectra Physics, US 

 Femtosecond Optical Parametric Osci.  APE, DE 

 Ti:Sapphire Femtosecond Amplifier 1 kHz, 250 kHz Coherent, US 

 Femtosecond Optical Parametric 
Amplifier 

 Light Conversion, LT 

THz-
TDS  

Terahertz Time-Domain Spectroscopy 0.1 – 4 THz Home-built 

Raman Raman Spectroscopy > 10 cm-1 Jobin-Yvon-Horiba, 
FR 

 In-situ Raman Spectroscopy > 100 cm-1 Jobin-Yvon-Horiba, 
FR 

PL Photoluminescence (10 – 300 K) 405 – 1550 nm Jobin-Yvon-Horiba, 
FR 

 Micro-Photoluminescence < 0.5 μm Jobin-Yvon-Horiba, 
FR 

TRPL Time-Resolved Photoluminescence  = 3 ps – 2 ns 

 > 5 ns 

Hamamatsu Phot., JP 
Stanford Research, 

US 

EL Electroluminescence 300 – 1600 nm Jobin-Yvon-Horiba, 
FR 

 Optical Split-Coil Supercond. Magnet 7 T Oxford Instr., UK 

PR Photomodulated Reflectivity 300 – 1600 nm Jobin-Yvon-Horiba, 
FR 

PLE Photoluminescence Excitation 300 – 1600 nm Jobin-Yvon-Horiba, 
FR 

OES Optical Emission Spectroscopy 250 – 800 nm Jobin-Yvon-Horiba, 
FR 

Confocal Confocal scanning photoluminescence 
microscope 

~1 μm resol. 
5 – 300 K 

Attocube, DE 

SSPD Superconducting single photon detectors 800 – 1500 nm Single Quantum, NL  
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Magnetic thin film deposition and analysis 

PLD Pulsed Laser Deposition  SURFACE, DE 

MFM Magnetic Force Microscope ~ 50 nm resol. VEECO; DI, US 

AFM/MFM Magnetic Force Microscope ~ 50 nm resol. BRUKER ICON tool, 
US 

SQUID 
MPMS 

Superconducting Quantum Interference 
Device 

 7 T Quantum Design, US 

SQUID 
VSM 

Vibrating Sample Magnetometer  7 T Quantum Design, US 

Vector-
VSM 

Vibrating Sample Magnetometer  2 T Quantum Design, US 

MOKE Magneto-Optic Kerr Effect (in-plane)  0.35 T Home-built 

MOKE Magneto-Optic Kerr Effect (perpend.)  2 T Home-built 

FR-MOKE Frequency-Resolved Magneto-Optic KE  1.1 T Home-built 

SKM Scanning Kerr Microscope  Home-built 

 Kerr Microscope  Evico Magnetics, DE 

TR-MOKE Time-Resolved MOKE (Pump-Probe)  Home-built 

VNA-FMR Vector Network Analyzer Ferromagnetic 
Resonance 

50 GHz Agilent, DE; 
Home-built 

Cryo-FMR Variable-Temperature Ferromagnetic 
Resonance 

3 – 300 K Attocube, DE; 
Home-built 

ME Magnetoellipsometer  LOT, DE; 
AMAC, US 

µBLS Brillouin Light Scattering Microscope  0.8 T, 
491 & 532 nm 

Home-built 

SKM Scanning Kerr Microscope with RF 
Detection (Spectrum Analyzer) 

 0.5 T, 40 GHz Home-built 

MT-50G High Frequency Magneto-Transport 
Setup 

 1.5 T, 50 GHz 
250 ps 

Home-built 
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Other analytical and measuring techniques 

STM/AFM UHV Scanning Probe Microscope (variable T) Omicron, DE 

AFM Atomic Force Microscope (Contact, Tapping, Spreading) Bruker, US 

AFM Atomic Force Microscope (with c-AFM, SCM-Module) Bruker, US 

 Dektak Surface Profilometer  Bruker, US 

 Micro Indenter/Scratch Tester  Shimatsu, JP 

MPMS Mechanical Properties Measurement System – Stretcher Home-built 

MS Mass Spectrometers (EQP-300, HPR-30)  HIDEN, UK 

 Wear Tester (pin-on disc)  Home-built 

LP Automated Langmuir Probe  Impedans, IE 

HMS Hall Measurement System 2 – 400 K,  9 T LakeShore, US 

 Van-der-Pauw HMS Ecopia 300 K & LNT, 0.5 T Bridge Technol., US 

MTD Magneto-Transport Device 300 K,  3 T Home-built 

RS Sheet-Rho-Scanner  AIT, KR 

RMAG Redmag Tensormeter System 240 – 350 K, 1.5 T Home-built 

GMAG Greymag Tensormeter System 300 K, 0.7 T Home-built 

IV / CV I-V and C-V Analyzer  Keithley, US 

IV / CV I-V and C-V Semi-Automatic Prober -60 – 300 °C Süss, DE; 
 Keithley, US 

IV I-V Prober 4.2 – 600 K LakeShore, Agilent, 
US 

GC Gas Chromatography (GC-2010)  Shimadzu, JP 

ECW Electrochemical workstation (CHI 760e)  CH instruments, US 

FDA Force­displacement analysis machine  Sauter, DE 

IV / VNA I-V and VNA Prober for VHF, LCR and  
frequency analysis measurements 

20-120 MHz Süss, DE; Cascade, 
US; Keysight, US 

OSCI 4-channel real time oscilloscope  1,5 GHz (BW), 
5 GSa/s 

Keysight, US 

IR-Cam TrueIR Thermal Imager -20 – 350 °C Keysight, US 

CM Confocal Microscope (Smartproof 5) 405 nm LED,  
z drive res. ~ 1 nm 

Carl Zeiss, DE 

FAS Fluidic Analytic Setup – microscope,  
high speed camera, and fluidic pumps 

2 GB 120 kfps, 
5 modules 

Zeiss, DE; Photron, 
US; Cetoni, DE 
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Deposition and processing techniques 

Physical Deposition Sputtering DC/RF, Evaporation Nordiko, UK 

 Electron Beam Evaporation System Leybold Optics, DE 

 Thermal Evaporation Bal-Tec, LI 

 DC/RF magnetron sputter system, 
4x 3’’ + 4x 2’’ magnetrons, substrate 
heating: RT – 950 °C, up to 4” wafers 

BESTEC, DE 

 DC/RF magnetron sputter system, 
6x 2’’ confocal magnetrons, substrate 
heating: RT – 650 °C, up to 3” wafers 

AJA International, US 

 High Power Impulse Magnetron Sputtering Melec, DE 

Molecular Beam Epitaxy III-V Semiconductors Riber, FR 

Chemical Vapour Deposition Plasma Enhanced CVD: 
a-Si, a-Ge, SiO2, SiON, Si3N4 

Oxford Instr., UK 

Atomic Layer Deposition Al2O3, HfO2, SiO2 Ultratech, US 

Dry Etching ICP-RIE: CF4, SF6, C4F8 Sentech, DE 

 RIBE,  6”: Ar, CF4 Roth & Rau, DE 

 Barrel reactor,  4”: O2, SF6 Diener electronic, DE 

Etching/Cleaning incl. Anisotropic Selective KOH Etching  

Photolithography Mask-Aligner MJB3, 2 µm accur.;  3” Süss, DE 

 Direct Laser Writer DWL 66FS, 2 µm 

accuracy,  8”x8” 

Heidelberg Instr., DE 

 Laser Micro Writer ML, 10 µm accuracy Durham Magneto Optics, 
UK 

Electron Beam Lithography Raith 150-TWO:  6”, 10 nm resol. Raith, DE 

 e-Line Plus:  4”, 10 nm resol. Raith, DE 

Thermal Treatment Room Temperature – 2000 °C  

 Furnace InnoTherm, DE 

 Rapid Thermal Annealing JETFIRST 100 JIPELEC, FR 

 Rapid Thermal Annealing AW 610 Allwin21, USA 

 Flash-Lamp Units (0.5 – 20 ms) Home-built;FHR/DTF, DE 

 Combined Flash Lamp Sputter Tool (Magnetron sputtering plus 
flash lamp annealing 0.3 – 3 ms, up to 10 Hz) 

ROVAK GmbH, DE 

 RF Heating (Vacuum) JIPELEC, FR 

 Laser Annealing (CW, 808 nm, 450 W) LIMO, DE 

 Laser Annealing (30 ns pulse,10 Hz, 308 nm, 500 mJ) COHERENT, USA 

 CVD Tube furnace (RT– 1200 oC, three channel gas) NBD, CN 

 Vacuum oven (RT – 250 oC, Vacuum < 133 Pa) LAB-KITS, CN 

Bonding Techniques Ultrasonic Wire Bonding Kulicke & Soffa, US 

 Semi-automatic Wire-bonder: 
Gold-ball and wedge-wedge bonding 
Ultrasonic generator: 60 kHz, 140 kHz 
Wire deformation control software 

F & S Bondtec, AT 

Cutting, Grinding, Polishing  Bühler, DE 

TEM Sample Preparation Plan View and Cross Section  
incl. Ion Milling Equipment 

Gatan, US 

Disperse and mixer Mixer for pastes and emulsions IKA, DE 

Centrifuge Max. 17850 rpm, -10 – 40 °C Thermo Scientific, US 
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Doctoral training programme 

International Helmholtz Research School NANONET 

The Institute of Ion Beam Physics and Materials Research is 

coordinating the International Helmholtz Research School for 

Nanoelectronic Networks (IHRS NANONET) supported by the Initiative 

and Networking Fund of the Helmholtz Association. The project started 

in October 2012. The total funding is 1.2 Mio. € for a period of 8 years. 

The IHRS NANONET is an international, interdisciplinary and 

thematically focused doctoral programme in the field of molecular 

electronics. The research school aims at attracting and promoting 

excellence by educating promising doctoral candidates with 

backgrounds in physics, chemistry, materials science and electrical 

engineering. During a period of three years, PhD candidates benefit from well-structured, comprehensive 

training curricula and multiple mentorship, while performing cutting edge research projects within one of 

the 15 NANONET research groups. The doctoral candidates have the unique opportunity to contribute to 

the advancement of molecular electronics by developing strategies for the integration of single nano-sized 

building blocks into large interconnected networks. 

 

The IHRS NANONET fosters not only professional qualification but also personal development by 

equipping young graduates with competencies for successful careers in a wide variety of positions in 

academia and industry. The NANONET International Conference 2019 was held in Dresden downtown and 

was attended by 61 participants of 20 nationalities.  

Three senior students concluded their PhD degrees in 2019: Congratulations to Dr. Julian Schütt, Dr. 

Dmitry Skidin and Dr. Panpan Zhang (all at TU Dresden). 

The consortium 

- Helmholtz-Zentrum Dresden-Rossendorf (HZDR) 

- Technische Universität (TU) Dresden 

- Leibniz Institute of Polymer Research (IPF) Dresden 

- Fraunhofer Institute for Ceramic Technologies and 

Systems (IKTS) Dresden 

- Nanoelectronic Materials Laboratory (NaMLab) 

gGmbH Dresden  

For further information, please contact the NANONET coordinator, Dr. Peter Zahn (nanonet@hzdr.de),  

or visit the IHRS NANONET website: www.hzdr.de/nanonet. 

http://www.hzdr.de/db/Cms?pNid=2880
http://www.hzdr.de/db/Cms?pNid=2880
http://www.hzdr.de/db/Cms?pNid=2881
mailto:nanonet@hzdr.de
http://www.hzdr.de/nanonet
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Publications and patents  

Books and Chapters 

1. Hlawacek, G. 
Ion Microscopy 
in Hawkes,P.; Spence, J.C.H. (eds.): Springer Handbook of Microscopy, Heidelberg: Springer 
(2019), ISBN 978-3030000684, pp. 677-714 

2. Rebohle, L.; Prucnal, S.; Reichel, D. 
Flash Lamp Annealing: From Basics to Applications 
Springer Series in Materials Science 288, Cham: Springer (2019), ISBN 978-3030232986 

3. Sluka, V.; Wintz, S.;  
Spin Textures as Sources for Magnons with Short Wavelengths and 3D Mode Profiles 
in Gubbiotti, G. (ed.): Three-Dimensional Magnonics, Singapur: Jenny Stanford Publishing 
(2019), ISBN 978-9814800730, pp. 219-259 

Publications in journals 

1. Arora, H.; Jung, Y.; Venanzi, T.; Watanabe, K.; Taniguchi, T.; Schneider, H.; Hone, J.; Helm, M.; 
Erbe, A.; Hübner, R. 
Effective Hexagonal Boron Nitride Passivation of Few-Layered InSe and GaSe to Enhance 
Their Electronic and Optical Properties 
ACS Applied Materials and Interfaces 11, 43480 (2019) 

2. Balaghi, L.; Bussone, G.; Grifone, R.; Hübner, R.; Grenzer, J.; Ghorbani-Asl, M.; 
Krasheninnikov, A.; Schneider, H.; Helm, M.; Dimakis, E. 
Widely tunable GaAs bandgap via strain engineering in core/shell nanowires with large 
lattice mismatch 
Nature Communications 10, 2793 (2019) 

3. Ge, J.; Wang, X.; Drack, M.; Volkov, O.M.; Liang, M.; Cañón Bermúdez, G.S.; Illing, R.; Wang, 
C.; Zhou, S.; Fassbender, J.; Kaltenbrunner, M.; Makarov, D. 
A bimodal soft electronic skin for tactile and touchless interaction in real time 
Nature Communications 10, 4405 (2019) 

4. Joseph, T.; Ghorbani Asl, M.; Kvashnin, A.G.; Larionov, K.V.; Popov, Z.I.; Sorokin, P.B.; 
Krasheninnikov, A. 
Nonstoichiometric Phases of Two-Dimensional Transition-Metal Dichalcogenides: From 
Chalcogen Vacancies to Pure Metal Membranes 
Journal of Physical Chemistry Letters 10, 6492 (2019) 

5. Prucnal, S.; Heera, V.; Hübner, R.; Wang, M.; Mazur, G.P.; Grzybowski, M.J.; Qin, X.; Yuan, Y.; 
Voelskow, M.; Skorupa, W.; Rebohle, L.; Helm, M.; Sawicki, M.; Zhou, S. 
Superconductivity in single-crystalline aluminum- and gallium-hyperdoped germanium 
Physical Review Materials 3, 054802 (2019) 

6. Schultheiss, K.; Verba, R.; Wehrmann, F.; Wagner, K.; Körber, L.; Hula, T.; Hache, T.; Kákay, A.; 
Awad, A.A.; Tiberkevich, V.; Slavin, A.N.; Fassbender, J.; Schultheiss, H. 
Excitation of whispering gallery magnons in a magnetic vortex 
Physical Review Letters 122, 097202 (2019) 

7. Sluka, V.; Schneider, T.; Gallardo, R.A.; Kakay, A.; Weigand, M.; Warnatz, T.; Mattheis, R.; 
Roldan-Molina, A.; Landeros, P.; Tiberkevich, V.; Slavin, A.; Schütz, G.; Erbe, A.; Deac, A.; 
Lindner, J.; Fassbender, J.; Raabe, J.; Wintz, S. 
Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in 
anisotropic spin textures 
Nature Nanotechnology 14, 328 (2019) 
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8. Abbe, E.; Renger, T.; Sznajder, M.; Klemmed, B.; Sachse, E.; Hübner, R.; Schüler, T.; 
Bärtling, Y.; Muchow, B.; Tajmar, M.; Schmiel, T. 
A material experiment for small satellites to characterise the behaviour of carbon 
nanotubes in space – development and ground validation 
Advances in Space Research 63, 2312 (2019) 

9. Ai, W.; Kou, L.; Hu, X.; Wang, Y.; Krasheninnikov, A.; Sun, L.; Shen, X. 
Enhanced sensitivity of MoSe2 monolayer for gas adsorption induced by electric field 
Journal of Physics: Condensed Matter 31, 445301 (2019) 

10. Appel, P.; Shields, B.J.; Kosub, T.; Hedrich, N.; Hübner, R.; Fassbender, J.; Makarov, D.; 
Maletinsky, P. 
Nanomagnetism of Magnetoelectric Granular Thin-Film Antiferromagnets 
Nano Letters 19, 1682 (2019) 

11. Aumayr, F.; Ueda, K.; Sokell, E.; Schippers, S.; Sadeghpour, H.; Merkt, F.; Gallagher, T.F.; 
Dunning, F.B.; Scheier, P.; Echt, O.; Kirchner, T.; Fritzsche, S.; Surzhykov, A.; Ma, X.; 
Rivarola, R.; Fojon, O.; Tribedi, L.; Lamour, E.; Crespo López-Urrutia, J.R.; Litvinov, Y.A.; 
Shabaev, V.; Cederquist, H.; Zettergren, H.; Schleberger, M.; Wilhelm, R.A.; Azuma, T.; 
Boduch, P.; Schmidt, H.T.; Stöhlker, T. 
Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with 
zero to relativistic speeds 
Journal of Physics B 52, 171003 (2019) 

12. Baghban Khojasteh Mohammadi, N.; Apelt, S.; Bergmann, U.; Facsko, S.; Heller, R. 
Revealing the Formation Dynamics of the Electric Double Layer by means of in-situ 
Rutherford Backscattering Spectrometry 
Review of Scientific Instruments 90, 085107 (2019) 

13. Bardeleben, H.; Zhou, S.; Gerstmann, U.; Skachkov, D.; Lambrecht, W.; Ho, Q.; Deák, P. 
Proton irradiation induced defects in β-Ga2O3: A combined EPR and theory study 
APL Materials 7, 022521 (2019) 

14. Beljakowa, S.; Pichler, P.; Kalkofen, B.; Hübner, R. 
Diffusion of Phosphorus and Boron from Atomic Layer Deposition Oxides into Silicon 
Physica Status Solidi (A) 216, 1900306 (2019) 

15. Berencén, Y.; Xie, Y.; Wang, M.; Prucnal, S.; Rebohle, L.; Zhou, S. 
Structural and optical properties of pulsed-laser deposited crystalline β-Ga2O3 thin films 
on silicon 
Semiconductor Science and Technology 34, 035001 (2019) 

16. Blasetti, C.; Andrian, I.; Billè, F.; Coghetto, E.; Deiuri, S.; Favretto, D.; Turcinovich, M.; 
Pugliese, R.; Osmenaj, E.; Appleby, G.; Froideval, A.; Pietsch, U.; Sanchez, A.; Valls Vidal, N.; 
Mitchell, E.; Rabhi, N.; Aogaki, S.; Kasik, Z.; Canova, F.; Gliksohn, F.; Stozno, D.; Michel, J.; 
Normand, D.; Brancaleon, R.; Paro, G.; Tinta, M.; Zotti, D. 
Wayforlight: The Catalogue of European Light Sources 
Synchrotron Radiation News 32, 35 (2019) 

17. Boeltzig, A.; Best, A.; Pantaleo, F.R.; Imbriani, G.; Junker, M.; Aliotta, M.; Balibrea-Correa, J.; 
Bemmerer, D.; Broggini, C.; Bruno, C.G.; Buompane, R.; Caciolli, A.; Cavanna, F.; Chillery, T.; 
Ciani, G.F.; Corvisiero, P.; Csedreki, L.; Davinson, T.; Deboer, R.J.; Depalo, R.; Di Leva, A.; 
Elekes, Z.; Ferraro, F.; Fiore, E.M.; Formicola, A.; Fülöp, Z.; Gervino, G.; Guglielmetti, A.; 
Gustavino, C.; Gyürky, G.; Kochanek, I.; Lugaro, M.; Marigo, P.; Menegazzo, R.; Mossa, V.; 
Munnik, F.; Paticchio, V.; Perrino, R.; Piatti, D.; Prati, P.; Schiavulli, L.; Stöckel, K.; Straniero, O.; 
Strieder, F.; Szücs, T.; Takács, M.P.; Trezzi, D.; Wiescher, M.; Zavatarelli, S. 
Direct measurements of low-energy resonance strengths of the 23Na(p,γ)24Mg reaction for 
astrophysics 
Physics Letters B 795, 122 (2019) 

18. Böhm, B.; Fallarino, L.; Pohl, D.; Rellinghaus, B.; Nielsch, K.; Kiselev, N.S.; Hellwig, O. 
Antiferromagnetic domain wall control via surface spin flop in fully tunable synthetic 
antiferromagnets with perpendicular magnetic anisotropy 
Physical Review B 100, 140411 (2019) 
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19. Böttger, S.; Wagner, C.; Lorkowski, F.; Hartmann, M.; Schuster, J.; Hermann, S. 
Sensitivity control of carbon nanotube based piezoresistive sensors by drain-induced 
barrier lowering 
Sensors and Actuators A 295, 288 (2019) 

20. Bredemeier, D.; Walter, D.C.; Heller, R.; Schmidt, J. 
Impact of Hydrogen-Rich Silicon Nitride Material Properties on Light-Induced Lifetime 
Degradation in Multicrystalline Silicon 
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184. Wang, Y.; Zhang, N.; Hübner, R.; Tan, D.; Löffler, M.; Facsko, S.; Zhang, E.; Ge, Y.; Qi, Z.; 
Wu, C. 
Enzymes Immobilized on Carbon Nitride (C3N4) Cooperating with Metal Nanoparticles for 
Cascade Catalysis 
Advanced Materials Interfaces 6, 1801664 (2019) 

185. Wehmeier, L.; Lang, D.; Liu, Y.; Zhang, X.; Winnerl, S.; Eng, L.M.; Kehr, S.C. 
Polarization-dependent near-field phonon nanoscopy of oxides: SrTiO₃, LiNbO₃, and 
PbZr0,2Ti0,8O3 
Physical Review B 100, 035444 (2019) 

186. Wilhelm, R.A.; Grande, P.L. 
Unraveling energy loss processes of low energy heavy ions in 2D materials 
Communications Physics 2, 89 (2019) 

187. Willig, L.; von Reppert, A.; Deb, M.; Ganss, F.; Hellwig, O.; Bargheer, M. 
Finite-size effects in ultrafast remagnetization dynamics of FePt 
Physical Review B 100, 224408 (2019) 

188. Wu, H.; Böttger, R.; Couffignal, F.; Gutzmer, J.; Krause, J.; Munnik, F.; Renno, A.; Hübner, R.; 
Wiedenbeck, M.; Ziegenrücker, R. 
‘Box-Profile’ Ion Implants as Geochemical Reference Materials for Electron Probe 
Microanalysis and Secondary Ion Mass Spectrometry 
Geostandards and Geoanalytical Research 43, 531 (2019) 

189. Xu, C.; Wang, M.; Yuan, Y.; Larkin, G.; Helm, M.; Zhou, S. 
Hole compensation effect in III-Mn-V dilute ferromagnetic semiconductors 
Journal of Physics D: Applied Physics 52, 355301 (2019) 

190. Xu, C.; Wang, M.; Zhang, X.; Yuan, Y.; Zhou, S. 
Ferromagnetic (In,Ga,Mn)As films prepared by ion implantation and pulsed laser melting 
Nuclear Instruments and Methods in Physics Research B 442, 31 (2019) 

191. Xu, C.; Zhang, C.; Wang, M.; Xie, Y.; Hübner, R.; Heller, R.; Yuan, Y.; Helm, M.; Zhang, X.; 
Zhou, S. 
p-type codoping effect in (Ga,Mn)As: Mn lattice location versus magnetic properties 
Physical Review Materials 3, 084604 (2019) 

192. Xu, K.; Gabourie, A.J.; Hashemi, A.; Fan, Z.; Wei, N.; Farimani, A.B.; Komsa, H.-P.; 
Krasheninnikov, A.; Pop, E.; Ala-Nissila, T. 
Thermal Transport in MoS2 from Molecular Dynamics using Different Empirical Potentials 
Physical Review B 99, 054303 (2019) 

193. Xu, M.; Liu, X.; Li, M.; Liu, K.; Qu, G.; Wang, V.; Hu, L.; Schneider, H. 
Transient Characteristics of Interdigitated GaAs Photoconductive Semiconductor Switch 
at 1-kHz Excitation 
IEEE Electron Device Letters 40, 1136 (2019) 

194. Yang, C.; Dong, R.; Wang, M.; Petkov, P.S.; Zhang, Z.; Wang, M.; Han, P.; Ballabio, M.; 
Bräuninger, S.A.; Liao, Z.; Zhang, J.; Schwotzer, F.; Zschech, E.; Klauss, H.-H.; Cánovas, E.; 
Kaskel, S.; Bonn, M.; Zhou, S.; Heine, T.; Feng, X. 
A semiconducting layered metal-organic framework magnet 
Nature Communications 10, 3260 (2019) 

195. Zhang, C.; Yuan, Y.; Wang, M.; Li, P.; Zhang, J.; Wen, Y.; Zhou, S.; Zhang, X.X. 
Critical behavior of intercalated quasi-van der Waals ferromagnet Fe0.26TaS2 
Physical Review Materials 3, 114403 (2019) 

196. Zhang, W.; Wang, M.; Wang, L.; Liu, C.H.; Chang, H.; Yang, J.J.; Liao, J.L.; Yang, Y.Y.; Liu, N. 
Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N 
high-entropy alloy multilayer coatings under helium ion irradiation 
Applied Surface Science 485, 108 (2019) 



Annual Report IIM 2019, HZDR-109   
 

97 

197. Zhang, X.; Xu, M.; Li, Q.; Wang, M.; Akhmadaliev, S.; Zhou, S.; Wu, Y.; Guo, B. 
Optical properties of ZnSxTe1-x synthesized by sulfur implantation 
Nuclear Instruments and Methods in Physics Research B 442, 24 (2019) 

198. Zhou, S.; Chen, X. 
Defect-induced magnetism in SiC 
Journal of Physics D: Applied Physics 52, 393001 (2019) 

199. Zhu, J.; Xia, Y.; Li, G.; Zhou, S.; Wimmer, S.; Springholz, G.; Pashkin, O.; Helm, M.; 
Schneider, H. 
Absorption edge, Urbach tail, and electron-phonon interactions in topological insulator 
Bi2Se3 and band insulator (Bi0.89In0.11)2Se3 
Applied Physics Letters 114, 162105 (2019) 

200. Zinovieva, A.F.; Zinovyev, V.A.; Stepina, N.P.; Katsuba, A.V.; Dvurechenskii, A.V.; 
Gutakovskii, A.K.; Kulik, L.V.; Bogomyakov, A.S.; Erenburg, S.B.; Trubina, S.V.; Voelskow, M. 
Electron Paramagnetic Resonance in Ge/Si Heterostructures with Mn-Doped Quantum 
Dots 
JETP Letters 109, 270 (2019) 

Publications in conference proceedings 

201. Braun, J.M.; Schneider, H.; Helm, M.; Mirek, R.; Boatner, L.A.; Marvel, R.E.; Haglund, R.F.; 
Pashkin, A. 
Optical Pump – THz Probe Response of VO2 under High Pressure 
XXI International Conference on Ultrafast Phenomena, 15.–20.07.2018, Hamburg, Germany 
EPJ Web of Conferences 205, 04003 (2019) 

202. Campillo, G.; Figueroa, A.I.; Arnache, O.; Osorio, J.; Marín Ramírez, J.M.; Fallarino, L. 
A brief discussion of the magnetocaloric effect in thin films of manganite doped with 
chromium 
VI Congreso Nacional de Ingeniería Física, 22.–26.10.2018, Bucaramanga, Colombia 
Journal of Physics: Conference Series 1247, 012013 (2019) 

203. Ciano, C.; Montanari, M.; Persichetti, L.; Di Gaspare, L.; Virgilio, M.; Bagolini, L.; Capellini, G.; 
Zoellner, M.; Skibitzki, O.; Stark, D.; Scalari, G.; Faist, J.; Rew, K.; Paul, D.J.; Grange, T.; 
Birner, S.; Pashkin, O.; Helm, M.; Baldassarre, L.; Ortolani, M.; de Seta, M. 
Electron-doped SiGe Quantum Well Terahertz Emitters pumped by FEL pulses 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8873894 

204. Fotev, I.; Balaghi, L.; Shan, S.; Hübner, R.; Schmidt, J.; Schneider, H.; Helm, M.; Dimakis, E.; 
Pashkin, O. 
Pump – Probe THz Spectroscopy Study of Electronic Properties of Semiconductor 
Nanowires 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8874068 

205. Meng, F.; Thomson, M.D.; Klug, B.; Ul-Islam, Q.; Pashkin, O.; Schneider, H.; Roskos, H.G. 
Cavity enhanced third-harmonic generation in Si:B pumped with intense terahertz pulses 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8874582 

206. Mitteramskogler, T.; Haslinger, M.J.; Wennberg, A.; Fernandez Martínez, I.; Muehlberger, M.; 
Krause, M.; Guillén, E. 
Preparation and Characterization of Solar Thermal Absorbers by Nanoimprint Lithography 
and Sputtering 
2019 MRS Spring Meeting & Exhibition, 22.–26.04.2019, Phoenix, USA 
MRS Advances 4, 1905 (2019) 

207. Pereira, P.H.; Penello, G.M.; Pires, M.P.; Helm, M.; Schneider, H.; Souza, P.L. 
Effect of the dopant location and the number of Bragg mirrors on the performance of 
superlattice infrared photodetectors 
2019 34th Symposium on Microelectronics Technology and Devices (SBMicro), 26.–30.08.2019, 
São Paulo, Brazil, DOI: 10.1109/SBMicro.2019.8919485 
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208. Rana, R.; Balaghi, L.; Fotev, I.; Schneider, H.; Helm, M.; Dimakis, E.; Pashkin, O. 
Plasmonic nonlinearity in GaAs/In0.20Ga0.80As core/shell nanowires 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8874085 

209. Rana, R.; Klopf, J.M.; Grenzer, J.; Schneider, H.; Helm, M.; Pashkin, A. 
Ultrafast metallization in NbO2 studied by pump-probe THz spectroscopy 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8873838 

210. Singh, A.; Pashkin, O.; Winnerl, S.; Helm, M.; Schneider, H. 
Filling the 5-10 THz gap using Ge-based photoconductive emitter 
2019 Conference on Lasers and Electro-Optics (CLEO), 05.–10.05.2019, San José, USA, 
DOI: 10.1364/CLEO_SI.2019.STu3F.3 

211. Singh, A.; Welsch, M.; Winnerl, S.; Helm, M.; Schneider, H. 
Scalable Large-Area Terahertz Emitters with Improved Electrode Design 
2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 
01.–06.09.2019, Paris, France, DOI: 10.1109/IRMMW-THz.2019.8874010 

Patents 

1. Samad, F.; Koch, L.; Arekapudi, S.S.P.K.; Schultheiß, H.; Hellwig, O. 
Magnetische Streufeld-Struktur, magnonisches Bauelement und Verfahren zur 
Herstellung einer magnetischen Streufeld-Struktur, DE 10 2019 129 203.4 
submitted to Deutsches Patent- und Markenamt (DPMA): 29.10.2019 
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Concluded scientific degrees 

PhD theses 

1. Baghban Khojasteh Mohammadi, Nasrin 
Chemical analysis of solid-liquid interfaces by Liquid-Rutherford Backscattering 
Spectrometry 
TU Dresden, 10.09.2019 

2. Blaschke, Daniel 
Memristive Eigenschaften von Hafniumdioxid- und Titandioxid-Dünnschichten 
TU Chemnitz, 12.06.2019 

3. Braun, Johannes 
Ultrafast response of photoexcited carriers in transition metal oxides under high pressure 
TU Dresden, 21.05.2019 

4. Canon Bermudez, Gilbert Santiago 
Magnetosensitive e-skins for interactive electronics 
TU Dresden, 08.11.2019 

5. Cansever, Hamza 
Spin-transfer torque induced by thermal gradients in magnetic tunnel junctions 
investigated using micro cavity ferromagnetic resonance 
TU Dresden, 05.04.2019 

6. Lang, Denny 
Infrared nanospectroscopy at cryogenic temperatures and on semiconductor nanowires 
TU Dresden, 16.09.2019 

7. Schmidt, Johannes 
THz pump-probe spectroscopy of the intersubband AC-Stark effect in a GaAs quantum 
well 
TU Dresden, 11.11.2019 

8. Schneider, Tobias 
Spin dynamics and transport in magnetic heterostructures 
TU Chemnitz, 15.03.2019 

9. Tauchnitz, Tina 
Novel methods for controlled growth of GaAs nanowires and GaAs/AlxGa1-xAs axial 
nanowire heterostructures on Si substrates by molecular beam epitaxy 
TU Dresden, 13.12.2019 

10. Titova, Alexandra 
Spin-transport in magnetic tunnel junctions with a zero-moment half-metallic electrode 
TU Dresden, 17.12.2019 

11. Wang, Mao 
Silicon hyperdoped with tellurium: Physical structure, electrical transport and infrared 
photoresponse 
TU Dresden, 07.10.2019 

12. Xu, Chi 
Application of ion beams on fabricating and manipulating III-Mn-V dilute ferromagnetic 
semiconductors 
TU Dresden, 30.10.2019 
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Bachelor/Master/Diploma theses  

1. Fekri, Zahra 
Fabrication and characterization of MoS2 based field effect transistor 
TU Dresden (M.Sc.), 26.09.2019 

2. Jagtap, Nagesh 
Fabrication and characterization of string resonator structures in silicon carbide for 
hybrid spin-mechanical systems 
TU Dresden (M.Sc.), 11.12.2019 

3. Kateel, Vaishnavi 
Fabrication and characterization of two-dimensional van der Waals heterostructures 
TU Dresden (M.Sc.), 25.09.2019 

4. Körber, Lukas 
Theory and simulation on nonlinear spin-wave dynamics in magnetic vortices 
TU Dresden (M.Sc.), 22.10.2019 

5. Preis, Kevin 
Theoretische Untersuchung der komplexen Bandstruktur konjugierter Polymere mit der 
dichtefunktionalbasierten Tight-Binding Methode  
TU Chemnitz (B.Sc.), 09.09.2019 

6. Roscher, Willi 
Statistische Untersuchung zufälliger Konfigurationen des SiGe:C Kristalls mit 
Dichtefunktionaltheorie  
TU Chemnitz (M.Sc.), 29.04.2019 

7. Weinhold, Tillmann 
Comparison of different approaches of wave vector resolved Brillouin light scattering 
spectroscopy for investigating interfacial Dzyaloshinskii–Moriya interaction 
TU Dresden (M.Sc.), 16.10.2019 

8. Welsch, Malte 
Optimization of broadband photoconductive terahertz emitters 
TU Dresden (M.Sc.), 14.11.2019 
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Awards and honors 

1. Duan, Juanmei 

PhD student in the department “Semiconductor Materials” won the Graduate Student Award of the 

E-MRS Fall Meeting 2019 for her presentation "Tunable plasmonics in heavily doped GaAs 

fabricated by ion implantation and sub-second annealing", Warsaw, Poland, Sept. 16 – 19, 2019. 

2. Hache, Toni 

PhD student in the Emmy-Noether group “Magnonics” received the Mentor-Prize of the FH Zwickau 

(WSHZ) in the Category 'Technik' for his Master’s Thesis “Preparation and Characterization of Spin-

Hall Effect-based nano Microwave Oscillators”. 

3. König-Otto, Jacob 

Former PhD student of the department “Spectroscopy“ won the HZDR PhD Award 2019 for his 

dissertation “Ladungsträgerdynamik in Graphen unterhalb der optischen Phononenergie”. 

4. Kosub, Tobias 

Member of the department “Intelligent Materials and Systems” received a Helmholtz Enterprise 

Funding Grant “Tensormeter” between 02/2019 – 06/2020. 

5. Krasheninnikov, Arkady 

Head of the group “Atomistic Simulations of Irradiation-induced Phenomena” was announced as 

Highly Cited Researcher 2019 by Clarivate Analytics (Web of Science), Philadelphia, PA, USA. 

6. Makarov, Denys 

Head of the department “Intelligent Materials and Systems” was awarded the HZDR Research Prize 

2019 for his work in the field of magnetic sensor technology for microfluidics and augmented reality. 

Furthermore, he received a Fudan Fellow Grant. He was invited to the Department of Material 

Science at the Fudan University, China, to carry out studies on shapeable magnetoelectronics and 

active soft matter. 

7. Singh, Abhishek 

Postdoc in the department "Spectroscopy" was selected by the International Union of Radio Science 

(Union Radio-Scientifique Internationale, URSI) for a URSI Young Scientist Award for his 

remarkable achievements in the field of photoconductive terahertz emitters on the occasion of the 

2019 URSI Asia-Pacific Radio Science Conference, New Delhi, India, March 9 – 15, 2019. 



102  Awards and honors 

 

8. Wagner, Kai 

Former PhD student in the Emmy-Noether group “Magnonics” received the Dresdner 

Promotionspreis Physik 2019 of the Faculty of Physics, TU Dresden for his dissertation ”Spin-

wave generation and transport in magnetic microstructures”. 

9. Wang, Mao 

PhD student in the department “Semiconductor Materials” won the Graduate Student Award at the 

E-MRS Spring Meeting 2019 for her presentation "Breaking the doping limit in silicon by deep-level 

impurities”, Nice, France, May 27 – 31, 2019. 
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Invited conference contributions 

1. Akhmadaliev, S. 
Commercial applications of research institute Tandem accelerators: the Rossendorf 
example 
NUSPRASEN Workshop on Nuclear Science Applications, 25.–27.11.2019, Helsinki, Finland 

2. Astakhov, G. 
Engineering and coherent control of defect qubits in SiC at room temperature 
1st Sino-German Symposium on "Defect Engineering in SiC Device Manufacturing – Atomistic 
Simulations, Characterization and Processing", 10.-14.11.2019, Beijing, China 

3. Astakhov, G. 
Room temperature coherent control of spin qudit modes in SiC 
Colloquium on Quantum Technology: Quantum Sensing, Quantum-IT, Quantum Computing, 
Simulation, Industrialization, 09.10.2019, Esslingen, Germany 

4. Astakhov, G.V. 
Coherent control of qudit modes in SiC at room temperature 
4th International Conference on Metamaterials and Nanophotonics METANANO 2019, Special 
Symposium QuantuMetanano, 14.–19.07.2019, Saint Petersburg, Russia 

5. Astakhov, G.V. 
Effect of irradiation on defect coherence properties in silicon carbide 
Ion Beams for Future Technologies 2019, 01.–03.04.2019, Dubrovnik, Croatia 

6. Awari, N.; Ilaykov, I.; Fowley, C.; Rode, K.; Lau, Y.-C.; Betto, D.; Thiyagarajah, N.; Green, B.W.; 
Yildrim, O.; Lindner, J.; Faßbender, J.; Coey, M.; Deac, A.M.; Gensch, M.; Kovalev, S. 
Narrow band tunable spintronic THz emission from ferrimagnetic nano-films 
International Conference on Optics and Electro-Optics 2019, 19.–22.10.2019, Dehradun, India 

7. Bali, R.; Schmeink, A.H.; Eggert, B.; Ehrler, J.; Liersch, V.; Semisalova, A.; Hlawacek, G.; 
Potzger, K.; Faßbender, J.; Thomson, T.; Wende, H.; Lindner, J. 
Nanoscale Ferromagnetism in Alloy Thin Film via Lattice Disordering 
Symposium ”Spins, Waves and Interactions“, 03.–05.09.2019, Greifswald, Germany 

8. Bali, R.; Schmeink, A.H.; Eggert, B.; Ehrler, J.; Liersch, V.; Semisalova, A.; Hlawacek, G.; 
Potzger, K.; Faßbender, J.; Thomson, T.; Wende, H.; Lindner, J. 
Nanoscale Ferromagnetism in Alloy Thin Film via Lattice Disordering 
6th International Conference “From Nanoparticles and Nanomaterials to Nanodevices and 
Nanosystems” (6th IC4N), 30.06.–03.07.2019, Corfu, Greece 

9. Bischoff, L.; Mazarov, P.; Pilz, W.; Klingner, N.; Gierak, J. 
Ion Sources for Focused Ion Beams – Present Status and Prospective Developments 
European FIB Network, 3rd EuFN Workshop 2019, 12.–14.06.2019, Dresden, Germany 

10. Cansever, H.; Lenz, K.; Narkowicz, R.; Kowalska, E.; Faßbender, J.; Deac, A.M.; Lindner, J. 
Ferromagnetic resonance detection in magnetic single objects via a novel microresonator 
and microantenna approach 
9th APMAS 2019 - International Advances in Applied Physics & Materials Science Congress & 
Exhibition, 20.–28.10.2019, Fethiye, Turkey 

11. Facsko, S. 
Emergence of nanoscale patterns under ion induced non-equilibrium conditions 
23rd International Workshop on Inelastic Ion-Surface Collisions, 17.–22.11.2019, Matsue, Japan 

12. Fuchs, F.; Gemming, S.; Schuster, J. 
Understanding the electron transport through NiSi2-Si interfaces 
International Workshop "Correlations and transport in one-dimensional structures", 04.–
07.07.2019, Dresden, Germany 
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13. Georgiev, Y. 

Junctionless Nanowire Transistors: an Excellent Platform for Ultrasensitive 
Chemo/Biosensors 
IHRS NanoNet International Conference, 08.–11.10.2019, Dresden, Germany 

14. Gierak, J.; Mazarov, P.; Bruchhaus, L.; Jede, R.; Bischoff, L. 
Electro-Hydro Dynamic Ion Sources and Focused Ion Beam Machines 
2019 MRS Fall Meeting, 01.–06.12.2019, Boston, USA 

15. Helm, M. 
THz relaxation dynamics and nonlinear optics in graphene 
2D Materials 2019, 30.09.–04.10.2019, Sochi, Russia 

16. Hlawacek, G. 
Nanostructure characterization with ions 
8th EU Korea Nanoworkshop, 25.11.2019, Brüssel, Belgien 

17. Hlawacek, G. 
Focused ion beam materials modification with noble gas ions 
23rd International Workshop on Inelastic Ion-Surface Collisions, 20.11.2019, Matsue, Japan 

18. Hlawacek, G. 
Spatially resolved materials modification using Helium Ion Microscopy 
63rd International Conference on Electron, Ion, and Photon Beam Technology and 
Nanofabrication (EIPBN), 30.05.2019, Minneapolis, USA 

19. Hlawacek, G. 
High resolution materials modification with low fluence Helium Ion Microscopy 
1st Sino-German Symposium on "Defect Engineering in SiC Device Manufacturing - Atomistic 
Simulations, Characterization and Processing" DESiC 2019, 12.11.2019, Beijing, China 

20. Hlawacek, G. 
In-situ experiments and characterization in the Helium Ion Microscope 
Ion beams for future technologies 2019, 02.04.2019, Dubrovnik, Croatia 

21. Hlawacek, G.; Klingner, N.; Veligura, V.; Xu, X.; Serralta Hurtado De Menezes, E.; 
Schmeink, A.H.; Borany, J.; Facsko, S. 
Analytic approaches for Helium Ion Microscopy 
Zakopane School of Physics, 24.05.2019, Zakopane, Poland 

22. Kelling, J.; Ódor, G.; Gemming, G. 
Solving the Kuramoto Oscillator Model on Random Graphs 
GPU Day 2019, 11.–12.07.2019, Budapest, Hungary 

23. Makarov, D. 
Compliant magnetic field sensors for flexible electronics 
FFlexCom Meeting 2019; DFG Priority Programme “High Frequency Flexible Bendable 
Electronics for Wireless Communication Systems”, SPP 1796, 07.10.2019, Dresden, Germany 

24. Makarov, D. 
Curved magnetic thin films: fundamentals and applications 
Joint European Magnetic Symposia (JEMS), 26.–30.08.2019, Uppsala, Sweden 

25. Makarov, D. 
Application of Magnetism on Curved Surfaces 
European Forum for Science, Research and Innovation, 24.–25.06.2019, Dresden, Germany 

26. Makarov, D. 
Flexible magnetoelectronics 
Nanoforum 2019, 17.05.2019, Linz, Austria 

27. Makarov, D. 
Droplet-based magnetofluidic platforms for detection and analytics 
The 2019 Joint MMM-Intermag Conference, 14.–18.01.2019, Washington DC, USA 

28. Makarov, D. 
Mechanical compliancy for magnetic field sensors 
Magnetic Frontiers 2019: Magnetic Sensors, 24.–27.06.2019, Lisbon, Portugal 
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29. Makarov, D. 

Curvilinear magnetism 
6th International Conference ‘From Nanoparticles and Nanomaterials to Nanodevices and 
Nanosystems’, 30.06.–03.07.2019, Corfu, Greece 

30. Makarov, D. 
Flexible electronics: from interactive on-skin devices to bio/medical applications 
Workshop on Active and Passive Materials for Tissue Engineering and Biomedical Applications, 
30.10.2019, Shanghai, China 

31. Mazarov, P.; Bruchhaus, L.; Nadzeyka, A.; Richter, T.; Jede, R.; Yu, Y.; Sanabia, J.E.; 
Bischoff, L.; Pilz, W.; Klingner, N.; Hlawacek, G. 
New light and heavy ion beams from liquid metal alloy ion sources for advanced 
nanofabrication and ion implantation 
2019 MRS Fall Meeting, 01.–06.12.2019, Boston, USA 

32. Mazarov, P.; Richter, T.; Bruchhaus, L.; Jede, R.; Yu, Y.; Sanabia, J.E.; Bischoff, L.; Gierak, J. 
Light and Heavy Ions from New Non-classical Liquid Metal Ion Sources for Advanced 
Nanofabrication 
AVS 66th International Symposium & Exhibition, 20.–25.10.2019, Columbus, OH, USA 

33. Merchel, S.; Rugel, G.; DREAMS-Users; DREAMS-Friends 
Chemistry first, Accelerator Mass Spectrometry (AMS) second 
52nd Annual conference of the German Society for Mass Spectrometry (DGMS), 10.–13.03.2019, 
Rostock, Germany 

34. Merchel, S.; Rugel, G.; Wallner, A.; DREAMS-Friends/Users 
Bedtime stories from space - Cosmogenic nuclides investigated by accelerator mass 
spectrometry 
Colloquium Analytische Atomspektroskopie 2019 (canas 2019), 23.–26.09.2019, Freiberg, 
Germany 

35. Pashkin, O.; Singh, A.; Winnerl, S.; Helm, M.; Schneider, H. 
Photoconductive germanium antenna emitting broadband THz pulses 
Advanced Electromagnetics Symposium AES 2019, 24.–26.07.2019, Lisbon, Portugal 

36. Rugel, G.; Tiessen, C.J.; Bemmerer, D.; Querfeld, R.; Scharf, A.; Steinhauser, G.; Merchel, S. 
Ultrasensitive (<1 mBq), cheap, and fast detection method for ⁷Be allowing high sample 
throughput 
2nd International Conference on Radioanalytical and Nuclear Chemistry (RANC 2019), 05.–
10.05.2019, Budapest, Hungary 

37. Schneider, H. 
Nonlinear terahertz spectroscopy of III-V semiconductor quantum wires and quantum 
wells using a free-electron laser 
Light Conference 2019, 16.–18.07.2019, Changchun, China 

38. Schultheiss, H. 
Magnon Transport in Spin Textures 
MLZ Conference: Neutrons for Information and Quantum Technologies, 04.06.2019, Lenggries, 
Germany 

39. Schultheiss, H. 
Magnon Transport in Spin Textures 
Magnonics 2019, 28.07.2019, Carovigno, Italy 

40. Schultheiss, K.; Verba, R.; Wehrmann, F.; Wagner, K.; Körber, L.; Hula, T.; Hache, T.; Kákay, A.; 
Awad, A.A.; Tiberkevich, V.; Slavin, A.N.; Fassbender, J.; Schultheiss, H. 
Excitation of whispering gallery magnons in a magnetic vortex 
APS March Meeting, 04.03.2019, Boston, USA 

41. Schultheiss, K.; Verba, R.; Wehrmann, F.; Wagner, K.; Körber, L.; Hula, T.; Hache, T.; Kákay, A.; 
Awad, A.A.; Tiberkevich, V.; Slavin, A.N.; Fassbender, J.; Schultheiss, H. 
Excitation of whispering gallery magnons in a magnetic vortex 
Magnetics and Optics Research International Symposium, 24.06.2019, Prague, Czech Republic 
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42. Schultheiss, K.; Verba, R.; Wehrmann, F.; Wagner, K.; Körber, L.; Hula, T.; Hache, T.; Kákay, A.; 

Awad, A.A.; Tiberkevich, V.; Slavin, A.N.; Fassbender, J.; Schultheiss, H. 
Excitation of whispering gallery magnons in a magnetic vortex 
Conference on Magnetism and Magnetic Materials (MMM), 06.11.2019, Las Vegas, USA 

43. Skorupa, W.; Quade, A.; Schäfer, J.; Schumann, T.; Eule, D. 
Antikorrosive Wirkung nanoskaliger Schichten auf metallischen Legierungen im Orgelbau 
BDO-Workshop Bleikorrosion (Bund Deutscher Orgelbaumeister e.V.), 24.–25.10.2019, 
Ludwigsburg, Germany 

44. Sluka, V.; Schneider, T.; Gallardo, R.A.; Kakay, A.; Weigand, M.; Warnatz, T.; Mattheis, R.; 
Roldan-Molina, A.; Landeros, P.; Tiberkevich, V.; Slavin, A.; Schütz, G.; Erbe, A.; Deac, A.; 
Lindner, J.; Fassbender, J.; Raabe, J.; Wintz, S. 
Emission and Propagation of Multi-Dimensional Spin Waves in Anisotropic Spin Textures 
11th Joint BER II and BESSY II User Meeting, 04.–06.12.2019, Berlin, Germany 

45. Titova, A.; Fowley, C.; Lau, Y.-C.; Borisov, K.; Atcheson, G.; Stamenov, P.; Coey, M.; Rode, K.; 
Lindner, J.; Faßbender, J.; Deac, A.M. 
Spin-transport in magnetic tunnel junctions with a zero-moment half-metallic electrode 
11th International Workshop on nanomagnetism and its novel applications SpinS-2019, 02.–
04.10.2019, Duisburg/Mülheim an der Ruhr, Germany 

46. Volkov, O. 
Experimental observation of exchange-driven chiral effects in parabolic nanostripes 
International Workshop “Curvilinear Magnetism”, 23.–24.05.2019, Kyiv, Ukraine 

47. Wagner, C.; Gemming, S. 
Calculation of defect- and interface-induced electronic states in 2D materials 
International Symposium on Epi-Graphene, 25.–28.08.2019, Chemnitz, Germany 

48. Wagner, C.; Rahaman, M.; Zahn, D.R.T.; Gemming, S. 
Interlayer excitons in van-der-Waals heterostructures from ab-initio perspective - the case 
of MoS2 on GaSe 
Holzhau-2019 meeting, 25.–27.09.2019, Holzhau, Germany 

49. Wilhelm, R.A. 
Ion Beam Spectroscopy with 2D Materials 
International Workshop on Inelastic Ion Surface Collisions, 17.–22.11.2019, Matsue, Japan 

50. Wilhelm, R.A. 
Interaction of highly charged ions with 2D materials 
Nanopatterning Workshop, 07.–10.07.2019, Guildford, United Kingdom 

51. Wilhelm, R.A. 
Ultrafast neutralization dynamics of highly charged ions upon impact on 2D materials 
Towards Reality in Nanoscale Materials X, 12.–14.02.2019, Levi, Finnland 

52. Wilhelm, R.A. 
Collisions of highly charged ions with 2D materials - What we learn from ion transmission 
spectroscopy 
XXXI International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC), 23.–
30.07.2019, Deauville, France 

53. Winnerl, S. 
Ultrafast Mid-Infrared and Terahertz Phenomena in Graphene 
Sino-German Bilateral Symposium on Low Dimensional Semiconductors and Opto-electronics 
Integration, 14.–17.11.2019, Changsha, China 

54. Winnerl, S.; Jadidi, M.M.; Chin, M.; Seidl, A.; Schneider, H.; Helm, M.; Drew, H.D.; 
Murphey, T.E.; Mittendorff, M. 
Nonlinear THz resoponse of graphene plasmonic structures 
10th International Conference on Metamaterials, Photonic Crystals and Plasmonics META 2019, 
23.–26.07.2019, Lisbon, Portugal 



Annual Report IIM 2019, HZDR-109   107 
 
55. Winnerl, S.; Schmidt, J.; König-Otto, J.; Mittendorff, M.; Schneider, H.; Helm, M. 

Nonlinear THz spectroscopy in low-dimensional semiconductors using a free-electron 
laser 
Photonics & Electromagnetics Research Symposium (PIERS), 17.–20.06.2019, Rome, Italy 

56. Wintz, S. 
Topological spin textures as spin-wave emitters 
6th International Conference from Nanoparticles and Nanomaterials to Nanodevices and 
Nanosystems (6th IC4N), 30.06.–03.07.2019, Corfu, Greece 

57. Wintz, S. 
Spin textures and spin waves as seen by x-ray microscopy 
9th International Conference on Nanomaterials: Applications & Properties (NAP) 2019, 15.–
20.09.2019, Odessa, Ukraine 

58. Wintz, S. 
Spin textures and spin waves as seen by x-ray microscopy 
Challenges & Opportunities in X-Ray Microscopy, 11.–15.02.2019, Kreuth (Schloss Ringberg), 
Germany 

59. Wintz, S. 
Spin textures and spin waves as seen by x-ray microscopy 
SpinS-2019, 02.–04.10.2019, Duisburg/Mülheim an der Ruhr, Germany 

60. Wolff, A.; Klingner, N.; Thompson, W.; Zhou, Y.; Lin, J.; Peng, Y.Y.; Ramshaw, J.A.M.; Xiao, Y. 
Focused ion beams in biology: How the Helium Ion Microscope and FIB/SEMs help reveal 
nature’s tiniest structures 
Microscience Microscopy Congress 2019, 01.–04.07.2019, Manchester, United Kingdom 

61. Zhou, S. 
Extended room-temperature infrared photoresponse in hyperdoped Si by ion implantation 
2nd International Conference on Radiation and Emission in Materials, 15.–18.12.2019, Bangkok, 
Thailand 

62. Zhou, S. 
Extended room-temperature infrared photoresponse in hyperdoped Si by ion implantation 
14th National Conference on Laser Technology and Optoelectronics, 17.–20.03.2019, Shanghai, 
China 

63. Zhou, S.; Wang, Y.; Liu, Y.; Gemming, S.; Helm, M. 
Defect induced magnetism in SiC 
1st Sino-German Symposium on "Defect Engineering in SiC Device Manufacturing – Atomistic 
Simulations, Characterization and Processing", 10.-14.11.2019, Beijing, China 
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Conferences, workshops, colloquia and seminars 

Organization of conferences and workshops 

1. Bittencourt, C.; Foster, A.; Hynninen, T.; Krasheninnikov, A.  
Towards reality in nanoscale materials X: Energy materials, defects, transport, methods, 
tools 
12. – 14.02.2019, Levi, Finland 

2. Chesnel, K.; Hellwig, O. 
Exploring Nanomagnetism in Thin Films 
12. – 14.11.2019, Brigham Young University, Provo, UT, USA 

3. Engelmann, H.-J.; Hlawacek, G.; Bischoff, L.; Klingner, N. 
3rd European FIB Network Workshop  
12. – 14.06.2019, HZDR, Dresden, Germany 

4. Escobar Galindo, R.; Ambrossini, A.; Guillén, E.; Krause, M. 
Materials Challenges in Surfaces and Coatings for Solar Thermal Technologies, 
Symposium ES08 at 2019 MRS Spring Meeting & Exhibit 
22.04. – 26.04.2019, Phoenix, Arizona, USA 

5. Erbe, A. et al. 
Physics of Self-Organization in DNA Nanostructures, Interdivisional Symposium SYDN at 
the Annual Spring Meeting of the German Physical Society (DPG) 
31.03. – 05.04.2019, Regensburg, Germany 

6. Erbe, A.; Zahn, P. 
NanoNet International Conference 
08. – 11.10.2019, Dresden, Germany 

7. Facsko, S.; Heller, R. 
Ion Beam Physics Workshop 
24. – 26.06.2019, HZDR, Dresden, Germany 

8. Hellwig, O. 
Control of Magnetic Microstructure in Thin Film Systems via Ion Beam Irradiation, 
Session at the Workshop “Spins, Waves and Interactions” 
03. – 06.09.2019, Alfried Krupp College, Greifswald, Germany 

9. Hellwig, O. 
Physics and Applications of Synthetic Antiferromagnets (SAFs),  
Symposium at the MMM Conference 
04. – 08.11.2019, Las Vegas, USA 

10. Krasheninnikov, A.V.; Komsa, H.-P. 
Atomic structure of nanosystems from first-principles simulations and microscopy 
experiments, International workshop 
28. – 30.05.2019, Helsinki, Finland 

11. Krause, M. 
Idea Workshop: Intelligent Layers and Nano Technologies 
24. – 25.07.2019, HZDR, Dresden, Germany 

12. Makarov, D.; Ortix, C. 
Geometry, topology, and condensed matter, Interdivisional Symposium SYGT at the 
Annual Spring Meeting of the German Physical Society (DPG) 
31.03. – 05.04.2019, Regensburg, Germany 

13. Makarov, D. 
Curvilinear magnetism: fundamentals and applications, Focused Session of the 
Magnetism Division at the Annual Spring Meeting of the German Physical Society (DPG) 
31.03. – 05.04.2019, Regensburg, Germany 
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14. Makarov, D.; Sheka, D. 

Curvilinear Micromagnetism, Workshop 
22. – 25.05.2019, Kiev, Ukraine 

15. Oswald, S. et al. 
18th European Conference on Applications of Surface and Interface Analysis - ECASIA19 
15. – 20.09.2019, Dresden, Germany 

16. Skorupa, W., Donchev, A. 
Sitzung des AiF projektbegleitenden Ausschusses „Nickel für Hochtemperatur-
anwendungen“ 
03.12.2019, HZDR, Dresden, Germany 

Colloquia 

1. Mittleman, D. M. 
Brown University, Providence, RI, USA 
Laser terahertz emission nanoscopy 
25.06.2019 

2. Ropers, C. 
IV. Physikalisches Institut, Georg-August-Universität Göttingen, Germany 
Ultrafast Electron Diffraction and Microscopy 
14.11.2019 

3. Suenaga, K. 
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan 
Electron microscopy and spectroscopy of low-dimensional materials 
13.05.2019 

4. Srikanth, H.  
University of South Florida, Tampa, FL, USA 
Tuning magnetic anisotropy in nanostructures for biomedical and electromagnetic 
applications 
24.04.2019 

5. Yang, D.  
State Key Lab of Silicon Materials and School of Material Science and Engineering, Zhejiang 
University, Hangzhou, China 
Defects in cast quasi-single crystalline silicon for solar cells 
19.09.2019 

6. Yang, H. 
Department of Electrical and Computer Engineering, National University of Singapore 
Spin-Orbit Technologies: From Magnetic Memory to Terahertz Generation 
30.09.2019 

Seminars 

1. Auerbach, K. 
Vienna University of Technology, Austria 
Understanding nonlinear magnetization dynamics in magnetic read heads: RF 
characterization and micromagnetic modelling 
09.01.2019 

2. Baraban, L. 
Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, Germany 
Nanoscale sensor devices for life science applications 
27.05.2019 

3. Bastard, G. 
École Normale Supérieure, Paris, France 
Investigations of IV-VI topological superlattices 
26.09.2019 
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4. Cao, L. 

Forschungszentrum Jülich, Germany 
Controlling structural and physical properties of epitaxial transition metal oxide films 
through oxygen stoichiometry 
29.04.2019 

5. Chen, F. 
Shandong University of Science and Technology, Shandong, China 
Ion beam modification of 2D materials for photonic applications 
23.08.2019 

6. Coey, M. 
Trinity College Dublin, Ireland 
Anomalous magnetism due to quantum fluctuations of the vacuum 
16.12.2019 

7. de la Rosa, N. 
Lund University, Sweden 
Investigation of lithium and fluorine content in geological materials using Nuclear 
Reaction Analysis (NRA) 
19.12.2019 

8. Efremov, D. 
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Germany 
Impurity effects in interaction driven topological insulators 
05.02.2019 

9. Gladii, O. 
CEA Grenoble, France 
Spin pumping as a generic probe for linear spin fluctuations 
23.01.2019 

10. Grande, P.L. 
Ion Implantation Laboratory, Institute of Physics, Federal University of Rio Grande do Sul, Porto 
Alegre, Brazil 
Medium energy ion scattering for characterization of the advanced materials: 
fundamentals and applications 
29.01.2019 

11. Iurchuk, V. 
Univ. Grenoble Alpes, CEA, CNRS, Spintec, Grenoble, France 
Spin torque driven oscillations of the reference layer in fully perpendicular magnetic 
tunnel junctions 
29.03.2019 

12. Ishioka, K. 
National Institute for Materials Science, Tsukuba, Ibaraki, Japan 
Ultrafast Carrier and Phonon Dynamics at Semiconductor Hetero-interfaces 
27.09.2019 

13. Kalbac, M. 
J. Heyrovsky Institute of Physical Chemistry of the ASCR, Prague, Czech Republic 
Identification and Quantification of Defects in 2D Materials 
10.10.2019 

14. Kiselev, N.S. 
Institute for Advanced Simulation and Peter Grünberg Institut, Forschungszentrum Jülich, 
Germany 
Topological magnetic textures with particle-like properties 
08.10.2019 

15. Komander, K. 
Uppsala University, Sweden 
Hydrogen site occupation in thin films directly investigated by ion beam analysis 
05.09.2019 
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16. Kostylev, M. 

Department of Physics and Astrophysics, The University of Western Australia, Perth, Australia 
Applied Magnonics 
09.09.2019 

17. Langer, M. 
Paul Scherrer Institut, Swiss Light Source, Villigen, Switzerland 
Development of a new soft x-ray ptychography spectro-microscope at the Swiss Light 
Source (SLS) 
29.01.2019 

18. Li, Y. 
City University of Hong Kong 
Synthetic strategies, shape control and optoelectronic applications of lead halide 
perovskite nanocrystals 
07.11.2019 

19. Matthus, C. 
Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB, Erlangen, 
Germany 
UV light detection and temperature measurements using 4H-SiC sensor devices 
16.01.2019 

20. Nadarajan, R. 
Pondicherry University, Puducherry, India 
Thermodynamics of divacancies in BaZrO3 
19.06.2019 

21. Navarro, J. 
Universidad de Zaragoza, Spain 
Development and optimization of 3D functional ferromagnetic nanostructures grown by 
focused electron beam induced deposition 
13.06.2019 

22. Neugebauer, N. 
Fachgebiet Physik, Justus-Liebig-Universität Gießen, Germany 
Investigation of the dipole interaction in and between ordered arrangements of magnetic 
nanoparticles 
28.08.2019 

23. Nguyen-Le, T. 
TU Dresden, Germany, and Katholieke Universiteit Leuven, Belgium 
Development of a platform for inspection of bacteria co-existance in gel micro-beads 
16.08.2019 

24. Piskarev, E. 
École Polytechnique Fédérale de Lausanne (EPFL), Institute of Mechanical Engineering, 
Lausanne, Switzerland 
Soft technologies based on electroactive polymers 
11.12.2019 

25. Poshakinskiy, A. 
Ioffe Institute St. Petersburg, Russia 
Membrane optomechanics and spin-mechanics 
08.04.2019 

26. Radic, D. 
Universität Münster, Germany 
Fluctuation electron microscopy on silicon amorphized at varying self ion-implantation 
conditions 
29.11.2019 

27. Ravelosona, D. 
Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris Sud, France 
Dzyaloshinskii-Moryia Interaction at disordered interfaces in ultra-thin films with 
perpendicular anisotropy 
16.10.2019 
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28. Rigler, M. 

AEROSOLL d.o.o., Ljubljana, Slowenia 
Measurements of carbonaceous aerosols 
04.11.2019 

29. Scheuner, C. 
Felix-Bloch-Institut für Festkörperphysik, Universität Leipzig, Germany 
Development of nano apertures for ion beam collimation 
06.09.2019 

30. Shaw, J.M. 
National Institute of Standards and Technology, Boulder, CO, USA 
Broadband ferromagnetic resonance spectroscopy: The “Swiss Army Knife” for 
understanding spin-orbit phenomena 
21.05.2019 

31. Togawa, Y. 
Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture 
University, Japan 
Wonders of Chiral Magnetic Materials 
05.07.2019 

32. Vaez Allaei, M. 
University of Tehran, Iran 
Phononic heat transport and thermal rectification in low dimensional heterostructures 
29.01.2019 

33. Valez, S. 
ETH Zurich, Switzerland 
Probing and manipulating magnetic domains and domain walls in magnetic insulators by 
spin currents 
29.04.2019 

34. Valtiner, M. 
Vienna University of Technology, Austria 
Angstrom-resolved characterization of electrochemical interfaces in real time during 
polarization 
22.01.2019 

35. van der Sar, T. 
Kavli Institute of Nanoscience, Delft University of Technology, Netherlands 
Probing condensed-matter physics using single-spin magnetometry 
28.01.2020 

36. van Houselt, A. 
University of Twente, Enschede, Netherlands 
Growth of hBN on Ir(111) 
15.05.2019 

37. Varvaro, G. 
CNR, Istituto di Struttura della Materia, Monterotondo Scalo, Rome, Italy 
Synthetic antiferromagnets for biomedical and flexible spintronic applications 
25.11.2020 

38. Veremchuk, I. 
Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany 
"Structural imperfections” in transition metal oxides: SPS synthesis and thermoelectricity 
09.09.2019 

39. Wunderlich, J. 
Hitachi Cambridge Laboratory/University of Cambridge, United Kingdom 
Domain wall nucleation and supermagnonic dynamics of domain walls driven by Spin-
Orbit Fields in an antiferromagnet 
14.05.2019 

40. Yu, H. 
Spintronics Interdisciplinary Research Center Beihang University, Beijing, China 
Strong interlayer magnon-magnon coupling in magnetic hybrid nanostructures 
17.04.2019 
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Exchange of researchers 

Guests at our institute 

1. Andriyevska, O. 
York University, Toronto, Canada; 01.07. - 27.09.2019 
 

2. Arias, R. 
Universidad de Chile, Santiago, Chile; 14.07. - 27.07.2019 
 

3. Cardos Tisnado, K. L. 
Universidad Nacional Autonoma de Mexico, Ensenada, Mexico; 15.11.2019 - 12.02.2020 
 

4. Cullen, E. 
Dublin Institute of Technology, Dublin, Ireland; 21.01. - 31.08.2019 
 

5. El-Said, A. S. 
Mansoura University, Mansoura, Egypt; 15.06. - 15.08.2019 
 

6. Escobar-Galindo, R. 
Cadiz University, Puerto Real, Spain; 15.07. - 26.07.2019 
 

7. Gallardo, R. 
Universidad Técnica Federico Santa Maria, Valparaiso, Chile; 23.05. - 21.07.2019 
 

8. Granell, P. 
Universidad Nacional de San Martin, San Martin, Argentina; 28.06. - 31.08.2019 
 

9. Guardia Arce, V. 
Universität Madrid, Madrid, Spain; 02.10. - 20.12.2019 

 
10. Hu, L. 

Shenzen University, Shenzen, P. R. China; 01.05.2019 - 30.04.2020 
 

11. Iastremskyi, I. 
Kyiv University, Kyiv, Ukraine; 10.01. - 09.02.2019 
 

12. Kaleniuk, O. 
Institute for Metal Physics, Kyiv, Ukraine; 22.02. - 15.03.2019 
 

13. Kobya, E. D. 
Pamukkale University, Denizli, Turkey; 11.06. - 10.09.2019 
 

14. Kordyuk, A. 
Institute for Metal Physics, Kyiv, Ukraine; 18.02. - 03.03.2019 
 

15. Korniienko, A. 
Kyiv University, Kyiv, Ukraine; 01.06. - 31.08.2019 
 

16. Kysliuk, V. 
Institute for Metal Physics, Kyiv, Ukraine; 08.03. - 16.03.2019 
 

17. Lao, Y. 
Nanning Normal University, Nanning, P. R. of China; 01.12.2019 - 30.11.2020 
 

18. Li, J. 
Institute of Fluid Physics, Mianyang, P. R. China; 01.06.2019 - 31.05.2021 
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19. Li, Y. 

University Cleveland, OH, USA; 15.05. - 02.08.2019 
 

20. Liu, J. 
North Carolina State University, Raleigh, NC, USA; 06.06. - 22.08.2019 
 

21. Makushko, P. 
Institute for Metal Physics, Kyiv, Ukraine; 01.06. - 31.07.2019 
 

22. Mensah, P. A. 
KNUST, Kumasi, Ghana; 01.06. - 31.08.2019 
 

23. Mystkowski, A. 
Bialystok University, Bialystok, Poland; 01.07. - 30.09.2019 
 

24. Nadarajan, R. 
University Pondicherry, Puducherry, India; 15.05. - 14.08.2019 

 
25. Oguz, O. 

Ankara University, Ankara, Turkey; 29.06. - 26.09.2019 
 

26. Pereira, P. 
Pontificia Universidade Católica do Rio de Janeiro, Brazil; 01.03.2018 - 30.06.2019 
 

27. Pylypovskyi, O. 
Kyiv University, Kyiv, Ukraine; 07.01. - 03.02.2019 
 

28. Qu, D. 
Southeast University, Nanjing, P. R. China; 11.06.2018 - 10.11.2019 
 

29. Ruiz Arce, D. D. 
Universidad Nacional Autonoma de Mexico, Ensenada, Mexico; 15.11.2019 - 12.02.2020 
 

30. Shapovalov, A. 
Institute for Metal Physics, Kyiv, Ukraine; 22.02. - 15.03.2019 
 

31. Sheka, D. 
Kyiv University, Kyiv, Ukraine; 07.01. - 03.02.; 01.07. - 22.07.; 05. - 26.08.2019 
 

32. Sing, P. 
Indian Institute of Technology, Delhi, India; 03.06. - 03.07.2019 
 

33. Suvorov, O. 
Institute for Metal Physics, Kyiv, Ukraine; 18.02. - 11.03.2019 
 

34. Tomilo, A. 
Kyiv University, Kyiv, Ukraine; 07.01. - 19.01.2019 
 

35. Tracy, J. 
North Caroline State University, Raleigh, USA; 06.06. - 22.08.2019 
 

36. Wojewoda, O. 
Brno University of Technology, Brno, Czech Republic; 19.02. - 30.08.2019 
 

37. Wu, D. 
Institute of Applied Electronics, Mianyang, P. R. China; 02.08. – 30.10.2019 
 

38. Yastremskyi, I. 
Kyiv University, Kyiv, Ukraine; 01.07. - 30.09.2019 
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39. Yi, A. 

Shanghai University, Shanghai, P. R. China; 02.08. - 30.09.2019 
 

40. Zabila, Y. 
Institute of Nuclear Physics, Krakow, Poland; 23.08. - 27.09.2019 
 

41. Zaiets, O. 
Kyiv University, Kyiv, Ukraine; 25.02. - 23.03.2019 
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Projects 

The projects are listed by funding institution and project starting date. In addition, the institute has 
several bilateral service collaborations with industrial partners and research institutions. These activities 
are not included in the following overview. 

European Projects 

1. 02/2016 – 07/2020 European Union                                                                                       EU 
IONS4SET – Single Electron Transistor 
Dr. J. v. Borany Phone: 0351 260 3378  j.v.borany@hzdr.de 

2. 01/2017 – 12/2020 European Union                                                                                       EU 
TRANSPIRE –Terahertz Radio Communication 
Dr. A. Deac Phone: 0351 260 3709  a.deac@hzdr.de 

3. 01/2017 – 12/2020 European Union                                                                                       EU 
npSCOPE – Nanoparticle Characterization 
Dr. G. Hlawacek Phone: 0351 260 3409  g.hlawacek@hzdr.de 

4. 05/2017 – 04/2021 European Union                                                                                       EU 
CALIPSOplus – Coordinated Access to Lightsources 
Prof. M. Helm Phone: 0351 260 2260  m.helm@hzdr.de 

5. 09/2017 – 02/2019 European Union                                                                                       EU 
Analytics – All-electrical analytic platform for digital fluidics 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

6. 01/2019 – 12/2022  European Union                                                                                       EU 
RADIATE – Research And Development with Ion Beams - Advancing Technology in 
Europe 
Prof. J. Fassbender Phone: 0351 260 3096  j.fassbender@hzdr.de 

 

Helmholtz Association Projects 

1. 10/2012 – 12/2020 Helmholtz-Gemeinschaft                                                                      HGF 
NANONET – International Helmholtz Research School on Nanoelectronics 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

2. 01/2013 – 12/2019 Helmholtz-Gemeinschaft                                                                      HGF 
W3-Professorship TU Chemnitz 
Prof. S. Gemming Phone: 0351 260 2470  s.gemming@hzdr.de 

3. 11/2014 – 12/2019 Helmholtz-Gemeinschaft                                                                      HGF 
Magnetism – HGF Postdoc Dr. K. Schultheiß 
Prof. J. Fassbender Phone: 0351 260 3096  j.fassbender@hzdr.de 

4. 05/2016 – 08/2019 Helmholtz-Gemeinschaft                                                                      HGF 
THz Spectroscopy – HGF Postdoc Dr. A. Singh 
Prof. M. Helm Phone: 0351 260 2260  m.helm@hzdr.de 

5. 10/2017 – 08/2020 Helmholtz-Gemeinschaft                                                                      HGF 
Helmholtz Exzellenznetzwerk – cfaed 2 + 3 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

6. 10/2017 – 02/2020 Helmholtz-Gemeinschaft                                                                      HGF 
Helmholtz ERC Recognition Award 
Dr. H. Schultheiß Phone: 0351 260 3243  h.schultheiss@hzdr.de 

mailto:j.v.borany@hzdr.de
mailto:d.makarov@hzdr.de
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7. 01/2019 – 09/2020 Helmholtz-Gemeinschaft                                                                      HGF 

Helmholtz Exzellenznetzwerk – DCM-MatDNA Phase 3 
Prof. S. Gemming Phone: 0351 260 2470  s.gemming@hzdr.de 

8. 01/2019 – 12/2021 Helmholtz-Gemeinschaft                                                                      HGF 
CROSSING – Crossing borders and scales - an interdisciplinary approach 

Dr. J. v. Borany Phone: 0351 260 3378  j.v.borany@hzdr.de 

9. 02/2019 – 06/2020  Helmholtz-Gemeinschaft                                                                      HGF 
Helmholtz Enterprise – Tensormeter 
Dr. T. Kosub Phone: 0351 260 2900  t.kosub@hzdr.de 

10. 07/2019 – 06/2020  Helmholtz-Gemeinschaft                                                                      HGF 
Helmholtz Enterprise Plus – Tensormeter 
Dr. T. Kosub Phone: 0351 260 2900  t.kosub@hzdr.de 

11. 12/2019 – 11/2024 Helmholtz-Gemeinschaft                                                                      HGF 
Helmholtz Innovation Lab – FlexiSens 

Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

 

German Science Foundation Projects 

1. 05/2014 – 01/2021 Deutsche Forschungsgemeinschaft                                                      DFG 
Emmy Noether Junior Research Group – Magnonics 
Dr. H. Schultheiß Phone: 0351 260 3243  h.schultheiss@hzdr.de 

2. 03/2017 – 08/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
MUMAGI – Disorder induced magnetism 
Dr. R. Bali Phone: 0351 260 2919  r.bali@hzdr.de 

3. 07/2017 – 06/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
HELEX2D – Interaction of highly charged ions with 2D materials 
Dr. R. Wilhelm Phone: 0351 260 3378  r.wilhelm@hzdr.de 

4. 08/2017 – 07/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
FlexCom – Magnetic field sensitive flexible communication system 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

5. 09/2017 – 08/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
Lane Formation 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

6. 11/2017 – 10/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
ULTRACRITICAL – High-temperature superconductors  
Dr. A. Pashkin Phone: 0351 260 3287  o.pashkin@hzdr.de 

7. 04/2018 – 03/2021 Deutsche Forschungsgemeinschaft                                                      DFG 
Confined Microswimmers 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

8. 04/2018 – 03/2021 Deutsche Forschungsgemeinschaft                                                      DFG 
IMASTE – Graphene encapsulated quasi-2D materials 
Dr. A. Krasheninnikov Phone: 0351 260 3148  a.krasheninnikov@hzdr.de 

9. 10/2018 – 09/2020 Deutsche Forschungsgemeinschaft                                                      DFG 
Doping by ALD and FLA 
Dr. L. Rebohle  Phone: 0351 260 3368  l.rebohle@hzdr.de 

10. 03/2018 – 02/2019 Deutsche Forschungsgemeinschaft                                                      DFG 
Magnetic Landscapes – Spin Dynamics 
Dr. A. Semisalova  Phone: 0203 37 92474  anna.semisalova@uni-due.de 

11. 01/2019 – 09/2019 Deutsche Forschungsgemeinschaft                                                      DFG 
Cluster of Excellence – Center for Advancing Electronics Dresden (cfaed) 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

mailto:j.v.borany@hzdr.de
mailto:d.makarov@hzdr.de
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12. 01/2019 – 05/2021 Deutsche Forschungsgemeinschaft                                                      DFG 

Quantum control of single spin centers in silicon carbide coupled to optical microcavities 
Dr. G. Astakhov Phone: 0351 260 3894  g.astakhov@hzdr.de 

13. 01/2019 – 01/2022 Deutsche Forschungsgemeinschaft                                                      DFG 
Printable giant magnetoresistive sensors with high sensitivity at small magnetic fields 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

14. 06/2019 – 06/2022 Deutsche Forschungsgemeinschaft                                                      DFG 

Interacting Magnonic Currents and Chiral Spin Textures for Energy Efficient Spintronics 
Dr. H. Schultheiß Phone: 0351 260 3243  h.schultheiss@hzdr.de 

15. 07/2019 – 06/2022 Deutsche Forschungsgemeinschaft                                                      DFG 
3D tailoring of all-oxide heterostructures by ion beams 
Dr. S. Zhou Phone: 0351 260 2484  s.zhou@hzdr.de 

16. 07/2019 – 06/2022 Deutsche Forschungsgemeinschaft                                                      DFG 
Lab-on-chip Systems Carrying Artificial Motors for Multiplexed and Multiparametric 
Biochemical Assays 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

17. 10/2019 – 11/2022 Deutsche Forschungsgemeinschaft                                                      DFG 
3D transport of spin waves in curved nano-membranes 
Dr. A. Kakay Phone: +49 351 260 2689  a.kakay@hzdr.de 

18. 11/2019 – 10/2022 Deutsche Forschungsgemeinschaft                                                      DFG 
Functionalization of Ultrathin MoS2 by Defect Engineering 
Dr. A. Krasheninnikov Phone: 0351 260 3148  a.krasheninnikov@hzdr.de 

 

Federally and Saxony State Funded Projects 

1. 04/2017 – 03/2019 Bundesministerium für Bildung und Forschung                                  BMBF 
German-Ukrainian Center for Large Scale Experiment 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

2. 08/2017 – 11/2019 Sächsische Aufbaubank                                                                        SAB 
PlatMOS – Atmospheric plasma treatment for corrosion suppression at organ pipes 
Dr. W. Skorupa Phone: 0351 260 3612  w.skorupa@hzdr.de 

3. 09/2017 – 12/2019 Sächsische Aufbaubank                                                                        SAB 
SiNergy – Si based battery electrodes 
Dr. S. Prucnal Phone: 0351 260 2065  s.prucnal@hzdr.de 

4. 10/2017 – 03/2019 Bundesministerium für Bildung und Forschung                                  BMBF 
Resistance-Tensormeter 
Dr. T. Kosub Phone: 0351 260 2900  t.kosub@hzdr.de 

5. 11/2017 – 12/2019 Arbeitsgemeinschaft industrielle Forschung                                           AiF 
Liquid metal ion source 
Dr. L. Bischoff Phone: 0351 260 2866  l.bischoff@hzdr.de 

6. 01/2018 – 10/2020 DECHEMA e.V.                                                                          DECHEMA 
High temperature oxidation resistance for nickel-based alloys by fluorine implantation 
Dr. W. Skorupa Phone: 0351 260 3612  w.skorupa@hzdr.de 

7. 11/2018 – 10/2020 Bundesministerium für Bildung und Forschung                                  BMBF 
Metal-germanium interface: Schottky barrier and ohmic contacts 
Dr. S. Prucnal Phone: 0351 260 2065  s.prucnal@hzdr.de 

8. 03/2019 – 08/2020 Arbeitsgemeinschaft industrielle Forschung                                           AiF 
Improvement of the dynamic properties of GaAs power diodes by proton irradiation 
Dr. J. v. Borany Phone: 0351 260 3378  j.v.borany@hzdr.de 

9. 03/2019 – 08/2020 Bundesministerium für Wirtschaft und Energie                                   BMWi 
Electrostatically functionalized materials with bio-sensitive adsorption properties 
Dr. L. Rebohle  Phone: 0351 260 3368  l.rebohle@hzdr.de 

mailto:d.makarov@hzdr.de
mailto:d.makarov@hzdr.de
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10. 05/2019 – 10/2020 Bundesministerium für Wirtschaft und Energie                                   BMWi 

Magnetoelectrical detector 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

11. 07/2019 – 01/2022 Sächsische Aufbaubank                                                                        SAB 
Innovative product platform for space-based Global Navigation Satellite Systems (GNSS) 
Dr. J. v. Borany Phone: 0351 260 3378  j.v.borany@hzdr.de 

12. 10/2019 – 09/2023 Bundesministerium für Bildung und Forschung                                  BMBF 
Group IV-heterostructures for most advanced nanoelectronics devices 
Dr. Y. Georgiev Phone: 0351 260 2321  y.georgiev@hzdr.de 
Dr. S. Prucnal Phone: 0351 260 2065  s.prucnal@hzdr.de 

13. 10/2019 – 09/2023 Bundesministerium für Bildung und Forschung                                  BMBF 
Black phosphorus in sensitive, selective and stable sensors 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

 

Personnel Exchange Projects and Society Chairs 

1. 06/2016 – 05/2019 Alexander-von-Humboldt-Stiftung                                                          AvH 
Humboldt fellowship Dr. Berencen  
Dr. L. Rebohle  Phone: 0351 260 3368  l.rebohle@hzdr.de 

2. 05/2017 – 12/2020 Institute of Electrical and Electronics Engineers                                  IEEE 
Magnetics Society German Chapter Chair 
Dr. H. Schultheiß Phone: 0351 260 3243  h.schultheiss@hzdr.de 

3. 07/2017 – 08/2020 Alexander-von-Humboldt-Stiftung                                                          AvH 
Humboldt fellowship Prof. Sheka 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

4. 04/2018 – 03/2020 Deutscher Akademischer Austauschdienst                                        DAAD 
ULTIMAT – Superlattices of ultra-thin InxGa1-xN/GaN quantum wells  
Dr. E. Dimakis Phone: 0351 260 2765  e.dimakis@hzdr.de 

5. 09/2018 – 08/2019 Deutscher Akademischer Austauschdienst                                        DAAD 
Leonhard Euler Grant: Curvature induced effects in nanowires 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

6. 07/2019 – 09/2019 Deutscher Akademischer Austauschdienst                                        DAAD 
Visit Dr. Yastremskyi 
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

7. 07/2019 – 10/2019 Deutscher Akademischer Austauschdienst                                        DAAD 
Visit Dr. Mystkowski  
Dr. D. Makarov Phone: 0351 260 3273  d.makarov@hzdr.de 

8. 11/2019 – 02/2020 Deutscher Akademischer Austauschdienst                                        DAAD 
Visit Karen Lizbeth Cardos Tisnado 
Dr. A. Erbe Phone: 0351 260 2366  a.erbe@hzdr.de 

mailto:d.makarov@hzdr.de
mailto:j.v.borany@hzdr.de
mailto:d.makarov@hzdr.de
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List of personnel 2019 

 

DIRECTORS 

Prof. Dr. M. Helm, Prof. Dr. J. Faßbender 

OFFICE 

S. Gebel, S. Kirch  

SCIENTIFIC STAFF 

Permanent staff 

Dr. C. Akhmadaliev 

Dr. G. Astakhov 

Dr. L. Bischoff 

Dr. J. von Borany 

Dr. A. Deac 

Dr. E. Dimakis 

Dr. A. Erbe 

Dr. S. Facsko 

Dr. C. Fowley 

Prof. Dr. S. Gemming 

Dr. Y. Georgiev 

Dr. J. Grenzer 

Dr. R. Heller 

Dr. G. Hlawacek 

Dr. R. Hübner 

Dr. A. Krasheninnikov 

Dr. M. Krause 

Dr. J. Lachner 

Dr. K. Lenz 

Dr. J. Lindner 

Dr. D. Makarov 

Dr. S. Merchel 

Dr. F. Munnik 

Dr. A. Pashkin 

Dr. M. Posselt 

Dr. K. Potzger 

Dr. S. Prucnal 

 

Dr. L. Rebohle 

Dr. G. Rugel 

Dr. H. Schneider 

Prof. Dr. A. Wallner 

Dr. S. Winnerl 

Dr. P. Zahn 

Dr. S. Zhou 

Non-permanent  

Dr. R. Bali 

Dr. Y. Berencén (P) 

Dr. D. Blaschke (P) 

Dr. H. Cansever 

Dr. A. Eichler-Volf (P) 

Dr. H.-J. Engelmann (P) 

Dr. D. Erb 

Dr. L. Fallarino 

Dr. A. Froideval (P) 

Dr. J. Ge (P) 

Dr. M. Ghorbani Asl 

Dr. O. Gladii (P) 

Dr. F. Goncalves (P) 

Dr. M. Grobosch (P) 

Dr. M. Ha (P) 

Dr. K.-H. Heinig (P) 

Prof. Dr. O. Hellwig 

Dr. R. Illing 

Dr. V. Iurchuk (P) 

Dr. J. Julin 

Dr. A. Kákay (P) 

R. Kaltofen (P) 

Dr. N. Klingner (P) 

T. Köhler (P) 

Dr. T. Kosub 

Dr. E. Kowalska 

Dr. C. Lei (P) 

 

Dr. A. Lindner (P) 

Prof. Dr. W. Möller (P) 

Dr. I. Mönch (P) 

Dr. M. Neubert (P) 

Dr. N. Nishida (P) 

Dr. R. Podlipec (P) 

Dr. O. Pylypovskyi 

Dr. A. Quade (P) 

Dr. R. Rana 

Dr. R. Salikhov 

Dr. P.A. Sanchez Romero 

(P) 

Dr. H. Schultheiß (P) 

Dr. K. Schultheiß (P) 

Dr. J. Schütt (P) 

Dr. A. Semisalova 

Dr. A. Singh (P) 

Dr. W. Skorupa (P) 

Dr. S. Stienen 

Dr. T.T. Trinh 

Dr. O. Volkov (P) 

Dr. C. Wagner (P) 

Dr. K. Wagner (P) 

Dr. M. Wang 

Dr. R. Wilhelm 

Dr. R. Yankov 

(P) Projects  
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TECHNICAL STAFF 

Permanent staff 

Rb. Aniol 

Rm. Aniol 

E. Christalle 

S. Eisenwinder 

B. Gebauer 

A. Gerner 

H. Gude 

J. Haufe 

A. Henschke 

H. Hilliges 

S. Klare 

J. Kreher 

A. Kunz 

K. Lang 

 

H. Lange 

U. Lucchesi 

F. Ludewig 

R. Mester 

Dr. R. Narkovic 

C. Neisser 

F. Nierobisch 

T. Putzke 

A. Reichel 

B. Scheumann 

G. Schnabel 

A. Schneider 

A. Scholz 

 

T. Schönherr 

T. Schumann 

I. Skorupa 

M. Steinert 

A. Thiel 

K. Thiemig 

J. Wagner 

A. Weise 

A. Weißig  

J. Winkelmann 

R. Ziegenrücker 

L. Zimmermann 

J. Zscharschuch 

Non-permanent 

A. Berens 

J. Heinze 

U. Kentsch 

A. Legrand 

T. Naumann 

L. Ramasubramanian 

(P) 

J. Schulz 

T. Tarnow 

T. Voitsekhivska (P) 

 

(P) Projects 

 

PhD STUDENTS 

Y. Alsaadawi 

H. Arora 

N. Baghban 

Khojasteh 

L. Balaghi 

T. Bayrak 

V. Begeza 

M. Bejarano 

G.S. Canon 

Bermudez 

P. Chava 

S. Creutzburg 

J. Duan 

A. Echresh 

I. Fotev 

S. Ghaderzadeh 

T. Hache 

D. Hilliard 

M. Hollenbach 

T. Hula 

D. Janke 

S. Jazavandi 

Ghamsari 

T. Joseph 

M.B. Khan 

F. Kilibarda 

L. Körber 

S. Kretschmer 

D. Lang 

Zi. Li 

Lokamani 

E.S. Oliveros Mata 

T. Prüfer 

F. Samad 

A. Schmeink 

R. de Schulz 

A. Seidl 

E. Serralta Hurtado  

Z. Shang 

S. Sorokin  

A. Strobel 

T. Tauchnitz 

A. Titova 

M. Vallinayagam 

T. Venanzi 

C. Wang 

X. Wang 

Y. Wei 

Y. Xie 

C. Xu 

X. Xu 

N. Yuan 

STUDENTS (Diploma / MSc / BSc) 

Z. Fekri 

Y. Gao 

S. Ghosh 

M. Hoppe 

N. Jagtap 

A. Jain 

V. Kateel 

F. Moebus 

A. Oelschlägel 

 

W. Roscher 

M.S. Shaik 

D. Sharma 

S. Skakeel 

 

J. Sonnenberg 

Y. Vekariya 

T. Weinhold 

M. Welsch 
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