FZR

FORSCHUNGSZENTRUM ROSSENDORF e.V.

FZR 92 - 07 Mai 1992

Archiv-Ezza

Frank Bergner

KAI e.V.

Projektgruppe "Grundlagenuntersuchungen zur Werkstoffprüfung"

Zähigkeitsprüfung intermetallischer Phasen

Portscher Scher Destaur (* 19

0 - 2051 Dreston

Zähigkeitsprüfung intermetallischer Phasen

2

F. Bergner, KAI e.V., Projektgruppe "Grundlagenuntersuchungen zur Werkstoffprüfung"

7.5.1992

Der Autor bedankt sich bei Herrn Dr. Kieback und Herrn Dr. Böhmert für zahlreiche Anregungen und Hinweise. Diese Arbeit wurde im Forschungszentrum Rossendorf mit freundlicher Unterstützung des Instituts für Sicherheitsforschung durchgeführt.

1

Zusammenfassung

In der vorliegenden Studie werden Ergebnisse zur Bruchzähigkeit intermetallischer Phasen sowie Erfahrungen bei deren experimentellen Bestimmung aus der Literatur zusammengetragen und diskutiert, ohne dabei Anspruch auf Vollständigkeit zu erheben. Da es für diese Kombination von Prüfaufgabe und Werkstoff bisher kaum gesicherte Erkenntnisse gibt, liegt der Schwerpunkt darauf, bevorzugt angewendete Verfahren herauszuarbeiten und die Gründe für diese Bevorzugung transparent zu machen.

Abstract

In the present study results on the fracture toughness of intermetallics as well as experience regarding their experimental determination are compiled from the literature and discussed without pretending to completeness. As there is little knowledge on this combination between problem of testing and class of materials this work is focused on preferred testing techniques and the reasons for this preferrence.

Inhaltsverzeichnis

1	Einleitung	4		
2	Besonderheiten und Bedeutung intermetallischer Phasen	4		
3	Bruchzähigkeit bei linear-elastischem Materialverhalten	5		
	3.1 Standardverfahren zur K_{Ic} -Bestimmung	5		
	3.2 Kleinprobenverfahren zur K_{Ic} -Bestimmung	9		
	3.3 Härteeindruckverfahren zur K_{Ie} -Bestimmung	10		
4	Rißwiderstand bei elasto-plastischem Materialverhalten	11		
	4.1 J_{Ic} -Bestimmung nach Standard	11		
	4.2 Kleinprobenverfahren zur J_{Ic} -Bestimmung	1 2		
5	Alternative Zähigkeitsparameter	13		
	5.1 Bruchdehnung	13		
	5.2 Kerbschlagarbeit	14		
	5.3 Meiselzähigkeit (chisel toughness)	14		
,	5.4 Spröd-duktil-Übergangstemperatur	15		
6	Zerstörungsfreie Prüfung			
7	Prüfempfehlung	16		

1 Einleitung

Bei der Behandlung von Bruchvorgängen begegnen sich wohl wie bei keinem anderen Forschungsgegenstand an sich unvereinbare kontinuumsmechanische Aspekte auf der einen Seite und mikrostrukturelle Aspekte auf der anderen Seite [1]. Die Behandlung der Spannungsverteilung um eine Rißspitze ist eine Frage der Kontinuumsmechanik. Dagegen sind Kriterien für Rißstart und -ausbreitung von mikrostruktureller, wenn nicht atomistischer Natur und bedürfen im Prinzip der Kenntnis der entsprechenden mikroskopischen Mechanismen. Eine Folge dieser Dualität besteht in der Tatsache, daß bruchmechanische Methoden, Prüfverfahren und Standards, die ursprünglich für eine bestimmte Werkstoffklasse eingeführt worden sind, nicht unkritisch auf andere Werkstoffklassen mit möglicherweise anderen Bruchmechanischer Sicht zunächst möglich erscheint.

Es ist nicht zuletzt diese Einsicht, die die vorliegende Arbeit motivierte, denn während es eine Reihe von Monographien und Überblicksartikeln zur Bruchzähigkeitsprüfung der Werkstoffklassen Metall [2, 3], Keramik [2, 4] und Metallmatrixverbund [5] gibt, sind nur wenig entsprechende Informationen über intermetallische Phasen verfügbar. Die vorliegende Studie versucht, ohne Anspruch auf Vollständigkeit Literaturhinweise zu diesem Thema zusammenzutragen und in allgemeineren Kontext zu stellen. Da es für diese Kombination von Prüfaufgabe und Werkstoff bisher kaum gesicherte Erkenntnisse gibt, liegt der Schwerpunkt darauf, bevorzugt angewendete Verfahren herauszuarbeiten und die Gründe für diese Bevorzugung transparent zu machen.

2 Besonderheiten und Bedeutung intermetallischer Phasen

Die besondere Stellung intermetallischer Phasen unter den Strukturwerkstoffen wird in einer Reihe von Übersichtsartikeln behandelt [6, 7, 8, 9]. Sie zeichnen sich durch hohe Festigkeit (Streckgrenze, Bruchfestigkeit) und Steifigkeit (Elastizitätsmodul) bis hin zu hohen Temperaturen aus und besitzen teilweise geringe Dichte, so daß sich ein extrem günstiges Festigkeits-Dichte-Verhältnis ergibt. Ein weiterer Vorzug ist die allgemein gute Widerstandsfähigkeit gegen Oxidation und Kriechschädigung. Dagegen neigen intermetallische Phasen zu ausgesprochener Sprödigkeit bei Raumtemperatur [10, 11], wobei sie eine Zwischenstellung zwischen metallischen Elementen bzw. Mischkristallen und den im allgemeinen noch spröderen Keramiken einnehmen. Bei hohen Temperaturen tritt meist ein ausgeprägter Spröd-duktil-Übergang auf.

٦.

Werkstoffe auf der Basis intermetallischer Phasen sind potentielle Kandidaten für Hochtemperaturanwendungen, z. B. als Rotoren in Gasturbinen von Flugzeugen. So wird über einen Ersatz von Nickelbasis-Superlegierungen oder gar eine Ausweitung der Betriebstemperaturen über deren gegenwärtigen Einsatzbereich hinaus nachgedacht. Um Werkstoffversagen im zukünftigen Einsatz auszuschließen, sind aber auch bei einem Hochtemperaturwerkstoff bestimmte Mindestanforderungen an die Bruchzähigkeit bei Raumtemperatur zu stellen.

In der Literatur finden sich eine Reihe prinzipiell verschiedener Ansätze, die Zähigkeitseigenschaften intermetallischer Phasen zu verbessern. Dazu gehören die Beeinflussung der Stöchiometrie [6], Korngrenzensegregation [12] (Bor in Ni_3Al [13, 14], aber vgl. auch [15]) sowie die Beeinflussung der Mikrostruktur [16].

3 Bruchzähigkeit bei linear-elastischem Materialverhalten

3.1 Standardverfahren zur K_{Ic} -Bestimmung

Für die Bestimmung der Bruchzähigkeit K_{Ie} metallischer Werkstoffe bei ebenem Dehnungszustand und quasistatischer Belastung gibt es eine Reihe von Standards (z. B. ASTM E399), die jedoch, wie bereits erwähnt, nicht speziell für die Prüfung intermetallischer Phasen ausgelegt sind. Einem Teil der Literaturergebnisse liegt das Bemühen zugrunde, diese Standards zu erfüllen. Ob eine konkrete Bruchzähigkeitsprüfung den entsprechenden Gültigkeitskriterien genügt, kann allerdings stets erst nach der Durchführung der Prüfung entschieden werden. Standard ASTM E399 beinhaltet folgende Gültigkeitskriterien:

- Probenabmessung: $B, a_0 > 2.5(K_{Ic}/\sigma_{0.2})^2$, wobei B die Probenbreite und a_o die Anrißlänge bezeichnen
- Belastung: $P_{max}/P_Q < 1.10$ (Bezeichnungen siehe Standard)
- Anrißfront: die an den Seiten gemessenen Rißlängen unterscheiden sich um weniger als 10 Prozent voneinander und um weniger als 15 Prozent vom Mittelwert
- Spannungsintensitätsfaktor des Anrisses: $K_{max} < 0.6 K_{Ic}$

Eine Reihe von Literaturergebnissen zur Bruchzähigkeit intermetallischer Phasen ist eher an der für keramische Werkstoffe üblichen Prüfpraxis orientiert. Hier wird gegenüber anderen Probenformen die Biegeprobe bevorzugt, wobei sowohl der Dreipunkt- als auch der Vierpunkt-Biegeversuch Anwendung finden. Für Keramiken ist der Vierpunkt-Biegeversuch favorisiert, da wegen des konstanten Biegemoments zwischen den inneren Auflagerollen die Probenausrichtung nicht so kritisch ist und ein möglicher Einfuß der Belastungsrolle auf die Spannungsverteilung an der Rißspitze vermieden wird [4].

Tab. 1 faßt eine Reihe von Meßergebnissen zur Bruchzähigkeit intermetallischer Phasen zusammen. Angegeben ist der provisorische Bruchzähigkeitswert K_Q , da nicht in allen Fällen aus der Literatur hervorgeht, ob es sich um einen gültigen K_{Ic} -Wert handelt. Die einzigen standardgerechten Bruchzähigkeitsprüfungen wurden in [17] durchgeführt, und zwar nach Standard ASTM E399, wobei auch die Gültigkeitskriterien Berücksichtigung fanden. Typische Probenabmessungen waren 6x6x50 mm^3 . Diese Arbeit enthält Vergleiche von Bruchzähigkeiten, die an gekerbten und an angerissenen Proben gewonnen worden sind, sowie Details zur Einbringung der Kerben und Anrisse. Im Bereich der erzielten Kerbradien von 50 – $75\mu m$ wurde kein signifikanter Einfluß auf die Bruchzähigkeit festgestellt. Für Bor-dotiertes Ni3Al konnten keine gültigen K_{Ie}-Werte gewonnen werden, da insbesondere die Probenbreite von 6mm zur Gewährleistung eines ebenen Dehnungszustandes nicht ausreichte.

Die meisten der in Tab. 1 enthaltenen Bruchzähigkeitswerte wurden an Biegeproben in Vierpunktbiegebelastung gewonnen. Details zu diesem Versuch sind in [18] angegeben. Proben der typischen Abmessungen 4x6x50

Material	Probe/Versuch	$K_Q/MPa\sqrt{m}$	Literatur
			· .
Ti ₅₁ Al49	4PB-gekerbt	7	[18]
Ti ₅₁ Al ₄₉	keine Angaben	4.2, 5.7, 5.8	201
Ti ₅₂ Al48	4PB-gekerbt	20	[21]
$Ti_{55}Al_{45}$	4PB-gekerbt	20	[18]
Ti ₅₆ Al ₄₄	4PB-gekerbt	15	[21]
Ti58Al42	4PB-gekerbt	22	[18]
$TiAl_{46}Cr_1Si_{0.2}$	4PB-gekerbt	>30	[21]
$TiAl_{24}Nb_{11}$	CT-angerissen	20.4	[22]
$TiAl_{24}Nb_{11}$	3PB-angerissen	20.0	[22]
Ti_5Si_3	4PB-gekerbt	2 - 6	[18]
$Ti_5Si_3 - Ti$	4PB-gekerbt	11	[23]
Al ₆₇ Ni ₈ Ti ₂₅	3PB-gekerbt	3	[19]
NiAl	4PB-gekerbt	2 - 5	118
NiAl	3PB-gekerbt	4.1, 5.4, 6.6	[17]
Ni_3Al	3PB-angerissen	20.0	[17]
$Ni_3Al + B$	3PB-angerissen	>28.1	[17]
NiAl - Cr	keine Angaben	8 - 10	[8]
Al_3Sc	4PB-gekerbt	3.1	[24]
$Al_{69}Zr_{25}Fe_6$	4PB	2.2	[24]
$Al_{66}Ti_{23}Fe_{6}V_{5}$	4PB-angerissen	2.1	[24]
V_3Au	Härteeindruck	1.7 - 3.2	25
AlCuCoSi	Härteeindruck	1.0	26

Tabelle 1: Literaturangaben zur Bruchzähigkeit

7

 mm^3 wurden mittels Funkenerrosion hergestellt und 2mm tief gekerbt bei einem Kerböffnungsradius von $150\mu m$. Der Einfluß des endlichen Kerböffnungsradius auf K_{Ic} soll im vorliegenden Fall vernachlässigt werden können, wenn dem Bruch keine plastische Verformung vorausgeht. Bei Bruchzähigkeiten unter $10MPa\sqrt{m}$ und Streckgrenzen zwischen 300 und 400MPa ist das Probengrößenkriterium erfüllt. Dies ist bei Bruchzähigkeiten oberhalb $10MPa\sqrt{m}$ jedoch nicht mehr gegeben, so daß die Ergebnisse aus bruchmechanischer Sicht als ungültig (geometrieabhängig) anzusehen sind [18], bei gleichbleibender Probengeometrie aber eine Reihung nach steigender Bruchzähigkeit zulassen.

In [19] wurde eine ebenfalls erosiv gekerbte Probe der Abmessungen 2.5x2.5x11 mm^3 in Dreipunktbiegung belastet. Der Kerb konnte mittels optischer Metallographie als scharf charakterisiert und als einem Ermüdungsanriß gleichwertig angenommen werden. Das Probengrößenkriterium ist mit $K_{Ic} = 3MPa\sqrt{m}$ und $\sigma_{0.2} = 355MPa$ erfüllt.

Für die Bewertung experimentell bestimmter Bruchzähigkeiten ist es wesentlich, ob die Bruchzähigkeit des betreffenden Materials unabhängig von der Rißlänge ist oder bei Rißfortschritt zunimmt [4] (R-Kurven-Verhalten). In [28] wurde für den Werkstoff Ti-47Al-2.6Nb-2(Cr+V) bei lamellarer Mikrostruktur ein R-Kurven-Verhalten gefunden, aber bei gleichachsiger Mikrostruktur nicht.

Bruchzähigkeiten intermetallischer Phasen wurden bei Temperaturen bis zu 1200°C gewonnen [18]. Da die meisten intermetallischen Phasen bei erhöhten Temperaturen einen Spröd-duktil-Übergang aufweisen, besteht das wesentliche Problem dabei in der zunehmenden Plastizität bzw. letztendlich in der Einhaltung des Probengrößenkriteriums. Die Besonderheiten, die bei der Bestimmung bruchmechanischer Kennwerte im Bereich eines Duktilspröd-Übergangs auftreten, sind von Stählen her bekannt, so daß auf die entsprechende Fachliteratur verwiesen werden kann [29, 30].

Der Einfluß hydrostatischen Druckes auf die Bruchzähigkeit von Ni_3Al wurde in [31] untersucht. Bei einem Druck von 965*MPa* wurde aus dem Zugversuch eine Bruchzähigkeit von $5MPa\sqrt{m}$ abgeschätzt.

Die prinzipielle Erfüllbarkeit bruchmechanischer Standards wie ASTM E 399 wurde für die Bestimmung der Bruchzähigkeit intermetallischer Phasen in [17] nachgewiesen. Insgesamt erscheint es vorteilhaft, Bruchzähigkeitsprüfungen intermetallischer Phasen standardgerecht durchzuführen, wenn das Gültigkeitskriterium für die Probenabmessungen eingehalten werden kann bzw. dessen Einhaltung wenigstens zu erwarten ist. Bei den gegenwärtig erreichten Bruchzähigkeitsniveaus sind zu diesem Zweck Biegeproben mit einem Mindestquerschnitt von 5x5 mm^2 erforderlich.

3.2 Kleinprobenverfahren zur K_{Ic} -Bestimmung

Aus der Notwendigkeit, den ebenen Dehnungszustand zu realisieren, ergeben sich untere Grenzen für die Probenabmessungen. Dem steht häufig der Zwang gegenüber, mit weniger Probenmaterial bzw. kleineren oder dünneren Proben auszukommen. Da dieser Zwang in der Kerntechnik wohl am größten ist, verwundert es nicht, daß die wesentlichen Entwicklungen aus dieser Richtung stammen [32]. Ein aktueller Überblick wird in [33] vermittelt. Prinzipiell sind zwei Herangehensweisen zu unterscheiden: die Bestimmung von K_{Ie} aus J_{Ie} , für dessen Bestimmung ein weniger strenges Probengrößenkriterium gilt, sowie die Bestimmung von K_{Ie} aus Parametern der Spannungs-Dehnungs-Kurve.

Da es sich bei J um ein wegunabhängiges Integral handelt, kann folgender Zusammenhang mit K_{Ic} , der Bruchzähigkeit bei ebenem Dehnungszustand, hergeleitet werden [34]:

$$K_{Ic} = \sqrt{\frac{J_{Ic}E}{1-\nu^2}} \tag{1}$$

wobei E den Elastizitätsmodul und ν die Poissonzahl bezeichnen. Standardverfahren zur J_{Ic} -Bestimmung sind in den Standards ASTM E813-81, ASTM E813-87 und ESIS P1-90 angegeben. Die Anforderungen an die Probenabmessungen sind hier weniger streng (siehe 4.1), so daß auch kleinere Proben verwendet werden können als bei der direkten K_{Ic} -Bestimmung. Gl. 1 fand in [22] zur K_{Ic} -Bestimmung Anwendung (Tab. 1). Dabei konnten bei erhöhten Temperaturen gültige Bruchzähigkeiten bis $47MPa\sqrt{m}$ ermittelt werden.

Andererseits kann mit Gl. 1 auch jedes Kleinprobenverfahren zur J_{Ie} -Bestimmung 4.2 als Kleinprobenverfahren zur K_{Ie} -Bestimmung aufgefaßt werden.

Einschränkend muß jedoch festgestellt werden, daß signifikante, durch den jeweiligen Bruchmechanismus bedingte Abweichungen zwischen diesem K_{JIc} und dem direkt bestimmten K_{Ic} auftreten können [35].

Die zweite Variante beruht auf der Ausnutzung der Spannungs-Dehnungs-Kurve. In [36] wird ein Zweiparameterkriterium vorgeschlagen, das die konkurrierenden Beiträge von Rißeinleitung und plastischem Kollaps zum Probenversagen berücksichtigt. Die Bruchzähigkeit ist dann aus der Bruchspannung im Dreipunktbiegeversuch σ_f gegeben:

$$K_{Ic} = \sqrt{\frac{8aY^2\sigma_c^2}{\pi}\ln \sec\frac{\pi\sigma_f}{2\sigma_c}}$$
(2)

wobei $\sigma_c = 2.18\sigma_u(1 - a/w)^2$ und σ_u , a, w, Y in dieser Reihenfolge Zugspannung, Rißlänge, Probenbreite und ein Compliancefaktor bedeuten.

In [37] wurde die Bruchzähigkeit aus der Bruchspannung in einem miniaturisierten Scheiben-Biege-Versuch bestimmt. Dieser Versuch wurde auch in [38] diskutiert und zur Bestimmung der Streckgrenze von Ni_3Al sowie bestrahltem und unbestrahltem Zr_3Al angewendet. Der Dorn-Test (small punch test) arbeitet mit ähnlicher Versuchsanordnung und Probengeometrie. In diesem Versuch konnte für eine Reihe keramischer Werkstoffe eine gute Korrelation zwischen K_{Ie} und der Bruchspannung nachgewiesen werden [39]. Danach gilt für K_{Ie} in $MPa\sqrt{m}$:

$$K_{Ic} = 0.07(\sigma_f)^{2/3} \tag{3}$$

Bemerkenswert ist, daß die zuletzt genannten Versuche mit Probendicken von 1mm und darunter auskommen, so daß insbesondere Werkstoff in Blechform untersucht werden kann.

Anwendungen dieser Verfahren sind für intermetallische Phasen bisher noch nicht bekannt. Es könnte jedoch, methodische Vorarbeiten vorausgesetzt, von Interesse werden, wenn man berücksichtigt, daß Spannungs-Dehnungs-Kurven relativ einfach zu gewinnen sind und in großer Zahl aus der Literatur hervorgehen. Andererseits ist zu berücksichtigen, daß die Bruchzähigkeit in wesentlichen Details über den Informationsgehalt von Spannungs-Dehnungs-Kurven hinausgehen kann (siehe 5.1).

3.3 Härteeindruckverfahren zur K_{Ic} -Bestimmung

In gewisser Weise zu den Kleinprobenverfahren zählend, verdienen die Härteeindruckverfahren zur Bestimmung der Bruchzähigkeit spröder Werkstoffe doch eine gesonderte Behandlung. Während bei jenen die Probe als ganzes zum Versagen geführt wird, nutzen diese die Tatsache, daß beim Eindringen einer Vickerspyramide in sprödes Material Risse entstehen, deren Länge mit der Bruchzähigkeit zusammenhängt. Ein Überblick über existierende Härteeindruckverfahren ist in [40] gegeben. In [41] werden diese Verfahren auf verschiedene Klassen spröder Werkstoffe angewendet (wobei leider keine intermetallischen Phasen einbezogen sind) und bezüglich verschiedener Qualitätskriterien miteinander verglichen.

Aus der Literatur sind bisher zwei Anwendungen von Härteeindruckverfahren zur Bestimmung der Bruchzähigkeit intermetallischer Phasen bekannt. In [25] wurden mit dem Verfahren nach [42] K_{Ic} -Werte von 1.7 bis $3.2MPa\sqrt{m}$ für V_3Au mit unterschiedlichen Sauerstoffgehalten gemessen. In [26] ergab die Anwendung des Verfahrens nach [43] einen K_{Ic} -Wert für einen Einkristall des quasikristallinen Materials AlCuCoSi von $1MPa\sqrt{m}$.

Insgesamt konnten in [41] für verschiedene Werkstoffe Bruchzähigkeiten im Bereich von unter $1MPa\sqrt{m}$ bis über $20MPa\sqrt{m}$ mittels Härteeindruckverfahren nachgewiesen werden, so daß gute Erfolgsaussichten für deren Anwendung auf intermetallische Phasen im unteren Zähigkeitsbereich vorausgesagt werden können. Als besonders vorteilhaft wurde in [41] die Variante nach [44] herauskristallisiert.

Neben der einschränkenden Voraussetzung, daß sich beim Härteeindruck überhaupt Risse bilden, ist auch die optische Erkennbarkeit der Risse sowie deren Verlauf unter der Probenoberfläche von Bedeutung [26]. Im Vergleich zu optischen Methoden können hier Ultraschallverfahren [45] bzw. die Ultraschallmikroskopie [46] Vorteile bringen.

4 Rißwiderstand bei elasto-plastischem Materialverhalten

4.1 J_{Ic} -Bestimmung nach Standard

Für die Bestimmung des kritischen J-Integrals J_{Ic} gibt es eine Reihe von Standards, z. B. ASTM E813-81, ASTM E813-87 und ESIS P1-90, die jedoch ähnlich wie bei K_{Ic} nicht speziell für intermetallische Phasen ausgelegt sind. Zur Anwendung dieser Standardverfahren auf die Rißzähigkeitsprüfung

metallischer Werkstoffe gibt es eine große Vielfalt an Spezialliteratur und eine beträchtliche Anzahl offener Fragen, deren Erwähnung allein schon über den Rahmen dieser Studie hinausgehen würde (siehe z. B. [2, 3, 29, 47]). Hier sei nur das die Probenabmessungen betreffende Gültigkeitskriterium genannt, nach dem es für die Gültigkeit eines gemessenen J_{Ie} -Wertes der Erfüllung der Bedingung

• $B, W - a > 25 J_{Ic} / \sigma_f$ (σ_f Fließgrenze)

bedarf. Wie bereits erwähnt, ist dieses Kriterium leichter zu erfüllen als das über Gl. 1 analoge K_{Ic} -Kriterium.

Die Ermittlung der Rißwiderstandskurve, d. h. der Abhängigkeit des J-Integrals vom stabilen Rißfortschritt, sowie des J_{Ic} -Wertes nach Standard ASTM E813-81 wurde in [22] für den Werkstoff Ti-24Al-11Nb praktiziert. Bei Temperaturen von Raumtemperatur bis 450°C wurden an CT-Proben der Dicke B=10mm gültige J_{Ic} -Werte zwischen 3.95 und $25.7kJ/m^2$ ermittelt. Messungen bei höheren Temperaturen, obwohl angestrebt, konnten wegen der begrenzten Temperaturverträglichkeit des "Clip-gages" nicht erfolgen. Dies dürfte auch die wesentliche Einschränkung für die Anwendung der Standardverfahren bei erhöhten Temperaturen überhaupt sein.

Ebenfalls nach Standard ASTM E813-81 wurde in [17] die Rißwiderstandskurve des Werkstoffs Ni_3Al mit und ohne Bor-Dotierung bestimmt. Dazu wurde ein Einprobenverfahren angewendet, wobei zur Monitorierung der aktuellen Rißlänge sowohl die Compliance bei Teilentlastungen als auch die optische Rißverfolgung an der Probenseitenfläche einbezogen wurden. Für die undotierten Proben ergaben die Messungen an 6mm dicken Dreipunktbiegeproben bei Raumtemperatur einen J_{Ie} -Wert von $4.96kJ/m^2$. Für die bordotierten Proben konnte dagegen an der Seitenfläche überhaupt kein Rißfortschritt nachgewiesen werden. Dies zeugt von ausgesprochener Zähigkeit des Werkstoffs, ohne daß ein konkretes Maß angegeben werden könnte.

4.2 Kleinprobenverfahren zur J_{lc} -Bestimmung

In bezug auf Kleinprobenverfahren zur Bestimmung des J_{Ie} -Wertes könnte das Ergebnis in [47] von besonderem Interesse sein, wonach für eine Reihe von Werkstoffen zwar die Rißwiderstandskurve als ganzes, nicht aber der physikalische Rißinitiierungswert probengrößenabhängig ist. Dieser ist näherungsweise durch das J-Integral an der Stelle der sogenannten Stretchzonenbreite gegeben, die mittels Rasterelektronenmikroskopie bestimmt werden kann.

Weiter sei auf Arbeiten zur Ermittlung von J_{Ie} an kleinen Rund-CT-Proben [48] (bis hinab zu Probendicken von 1 mm) sowie vermittels des bereits erwähnten Dorn-Tests an kleinen Scheiben [49] verwiesen. Eine einfache Korrelation zwischen J_{Ie} und den Parametern des Dorn-Tests wurde für verschiedene Werkstoffe in [39] abgeleitet:

$$J_{Ic} = 42(\delta/t)^{3/2} - 50 \tag{4}$$

wobei δ die Bruchdurchbiegung und t die Scheibendicke bedeuten und J_{Ic} in kJ/m^2 angegeben ist.

Anwendungen für intermetallische Phasen, obwohl sicherlich von Interesse, sind nicht bekannt.

5 Alternative Zähigkeitsparameter

5.1 Bruchdehnung

Ohne auf Details einzugehen, können zwei prinzipiell verschiedene Möglichkeiten, die Bruchzähigkeit zu erhöhen, unterschieden werden. Dabei handelt es sich erstens um die Erhöhung der Bruchzähigkeit durch Verbesserung des Verformungsvermögens, in diesem Falle ist die Bruchdehnung (auch Duktilität genannt) ein geeignetes Zähigkeitsmaß. Zweitens kann die Bruchzähigkeit aber auch ohne adäquate Duktilitätssteigerung verbessert werden. In diese Kategorie fällt die Beeinflussung der Rißausbreitung (z. B. durch Rißauffang oder Rißverzweigung). Die Bruchdehnung ist dann kein geeignetes Zähigkeitsmaß. Ein Beispiel ist Ni_3Al , das zwar durch Sprödbruch versagt, aber eine unter dieser Bedingung gute Bruchzähigkeit von bis zu $20MPa_{\sqrt{m}}$ aufweist [17].

Ungeachtet dieser Einschränkung ist die Bruchdehnung das für intermetallische Phasen am häufigsten verwendete Zähigkeitsmaß. Die Bruchdehnung wird üblicherweise als nichtelastischer Anteil der relativen Längenänderung der Probe im Zugversuch [7, 8, 9, 13, 14, 21, 23, 50, 51, 52, 53] oder im Druckversuch [54, 55] gemessen. Auch der nichtelastische Anteil der Durchbiegung im Dreipunktbiegeversuch kam zur Anwendung [56]. Die Bruchdehnung (Duktilität) von Werkstoffen auf der Basis intermetallischer Phasen liegt bei Raumtemperatur i. allg. bei einigen zehntel bis einigen Prozent.

Die Einflüsse von Dehnungsgeschwindigkeit und Probenkerbung auf die Spannungs-Dehnungs-Kurve wurden in [57] bzw. [58] behandelt.

5.2 Kerbschlagarbeit

Ein weiteres, allerdings gröberes Maß für die Bruchzähigkeit kann durch die Kerbschlagarbeit gegeben sein, die im konventionellen Kerbschlagbiegeversuch bestimmt wird. Bei Stählen werden neuerdings Bemühungen forciert, bruchmechanische Kennwerte aus der Hochlage der Kerbschlagarbeit abzuleiten [59, 60, 61]. Auch über Korrelationen zwischen der im konventionellen Kerbschlagbiegeversuch bestimmten Übergangstemperatur T_{28J} mit K_{Ic} wurde berichtet [62].

Die Temperaturabhängigkeit der Kerbschlagarbeit einer intermetallischen Phase von der Temperatur wurde in [53] untersucht. Dabei wurde festgestellt, daß diese von 76J bei Raumtemperatur auf fast 0J bei $T = 800^{\circ}C$ abfällt, was auf einen Übergang im Gleitsystem zurückzuführen sein könnte. Weitere Literaturberichte zum konventionellen Kerbschlagbiegeversuch konnten in [53] nicht aufgefunden werden. Einige Ergebnisse finden sich allerdings in [63].

5.3 Meiselzähigkeit (chisel toughness)

Eine vierstufige, allerdings subjektive Zähigkeitsskale beruht auf der Schlagkraft, die eine Versuchsperson aufbringen muß, um eine stabförmige Probe mit Hammer und Meisel zum Bruch zu bringen. Meiselzähigkeiten von mehr als einhundert intermetallischen Phasen sind in [63, 64, 65, 66, 67] (weitere in der dort zitierten Literatur) angegeben. Diese Ergebnisse gestatten immerhin eine grobe Reihung intermetallischer Phasen nach steigender Zähigkeit und damit ein Aufspüren von Kandidaten für konkrete Anwendungen.

5.4 Spröd-duktil-Übergangstemperatur

Bereits 1963 gelang an einer Reihe intermetallischer Phasen der Nachweis eines Spröd-duktil-Übergangs bei erhöhten Temperaturen [68]. Dieser Übergang sorgt dafür, daß Hochtemperaturwerkstoffe auf der Basis intermetallischer Phasen i. allg. ausreichende Zähigkeit bei der Betriebstemperatur besitzen, bei Abkühlung auf Raumtemperatur diese Zähigkeit aber ziemlich sprunghaft verlieren.

Aus der Sicht der Werkstoffprüfung ergibt sich ein weiteres Problem, das bereits von Stählen her bekannt ist: Es kann kein universeller bruchmechanischer Werkstoffkennwert definiert werden, der das Bruchverhalten über den Bereich des Spröd-duktil-Übergangs hinweg charakterisieren würde. Im Gegenteil ist die Charakterisierung des Bruchverhaltens im Übergangsbereich an sich problematisch. Dem Stand der Bruchmechanik folgend müßte wohl so herangegangen werden, daß im Bereich spröden Materialverhaltens K_{Ie} und im Bereich duktilen Materialverhaltens die Rißwiderstandskurve, jeweils bei größtmöglicher Annäherung an den Übergang, bestimmt wird. Bei der Bestimmung der Rißwiderstandskurve bei hohen Temperaturen treten meßtechnische Probleme auf [22], so daß gegebenenfalls auf das aufwendige Mehrprobenverfahren zurückgegeriffen werden muß.

Zum Nachweis der Existenz eines Spröd-duktil-Übergangs bzw. der groben Abschätzung seiner Lage genügt dagegen i. allg. ein vereinfachtes Vorgehen: In [63, 64, 65, 66, 67, 69] (und in der dort zitierten Literatur) sind für mehr als einhundert intermetallische Phasen die höchsten Temperaturen angegeben, bei denen bei der Mikrohärteprüfung noch Risse beobachtet werden konnten. Dagegen wurde der konventionelle Kerbschlagbiegeversuch offensichtlich noch nicht zur Charakterisierung des Spröd-duktil-Übergangs intermetallischer Phasen angewendet, möglicherweise wegen der benötigten Materialmengen. Aber auch hier sei auf die Verwendung von Kleinkerbschlagproben hingewiesen [70].

6 Zerstörungsfreie Prüfung

Neben der zerstörenden mechanischen Prüfung von mehr oder weniger representativem Probenmaterial sind für Werkstoffe im Einsatz immer auch Verfahren der zerstörungsfreien Prüfung, die am Bauteil selbst ausgeführt werden können, von Interesse. Wie das Beispiel der Reaktorsicherheitsforschung zeigt, gilt dies bereits zu einem Zeitpunkt, da sich der Werkstoffeinsatz noch in der Vorbereitungsphase befindet. Ein Überblick über Möglichkeiten und Anwendungen der zerstörungsfreien Charakterisierung des Werkstoffzustandes und Schädigungsfortschritts von Reaktorkomponenten ist in [71] gegeben.

In [72] wird für die 90er Jahre ein zunehmendes Betätigungsfeld der zerstörungsfreien Prüfung auf dem Gebiet der Charakterisierung von Grenzflächen vorausgesagt. Als Beispiel werden Segregationsphänomene in intermetallischen Phasen angeführt, die nachgewiesenermaßen hervorragende Bedeutung für deren Bruchverhalten besitzen. Ungeachtet dessen finden sich in der jüngsten Literatur kaum konkrete Arbeiten zu diesem Gebiet.

Einzige, allerdings triviale Ausnahme ist die Anwendung des Ultraschall-Impuls-Echo-Verfahrens zur Bestimmung der elastischen Eigenschaften intermetallischer Phasen. Details und Ergebnisse sind in [63, 64, 65, 66, 67, 69] enthalten. Der Einsatz des Impuls-Echo-Verfahrens zum Nachweis von herstellungs- bzw. anwendungsbedingter Porosität oder von Ermüdungsrissen sowie zur zerstörungsfreien Korngrößenbestimmung ist denkbar und wird bei anderen Werkstoffklassen bereits praktiziert. Aufgrund der Verwandtschaft der Stoffsysteme sei hier nur die Untersuchung einer dichten $(100/mm^3)$ Verteilung relativ kleiner Mikroporen $(10\mu m$ Radius) in einer pulvermetallurgisch hergestellten Superlegierung mittels Ultraschallrückstreuung erwähnt [73].

Schließlich kann auch das Härteeindruckverfahren als quasi-zerstörungsfreie Methode zur Zähigkeitscharakterisierung angesehen werden.

7 Prüfempfehlung

Zusammenfassend kann auf der Grundlage der Literaturstudie und der Diskussion der wichtigsten Ergebnisse folgende Prüfempfehlung für Werkstoffe auf der Basis intermetallischer Phasen abgeleitet werden:

• Prüfungen zur Bestimmung der Bruchzähigkeit für den ebenen Dehnungszustand K_{Ie} sollten standardgerecht durchgeführt werden. Die prinzipielle Durchführbarkeit der Prüfung gemäß Standard ASTM E399 wurde in [17] für ermüdungsangerissene Dreipunktbiegeproben mit mindestens $5x5 mm^2$ Querschnitt nachgewiesen.

- Prüfungen zur Bestimmung der Rißwiderstandskurve oder der Rißeinleitungszähigkeit J_{Ic} für elasto-plastisches Materialverhalten können bei gleicher Probengeometrie ebenfalls standardgerecht durchgeführt werden [17]. Dabei ist die Compliance-Methode zur Messung der aktuellen Rißlänge (Teilentlastungsverfahren) geeignet. Bei bisherigen Anwendungen wird der Standard ASTM E813-81 bevorzugt.
- Wenn das Probengrößenkriterium für das Vorliegen des ebenen Dehnungszustandes nicht erfüllt ist, kann K_{Ic} mit Gl. 1 aus J_{Ic} abgeschätzt werden.
- Kleinprobenverfahren, Härteeindruckverfahren und die Bestimmung der Bruchdehnung im Zug-, Druck- oder Biegeversuch liefern nur grobe und unvollständige Aussagen über die Bruchzähigkeit. Diese Verfahren haben aber ihre Berechtigung, wenn nur kleine Volumina bzw. dünne Bleche verfügbar sind. Der Dorn-Test [39] gestattet in verschiedenen Varianten sowohl die Abschätzung von K_{Ic} als auch von J_{Ic} an Scheiben unter 1 mm Dicke.
- Zerstörungsfreie Verfahren haben zur Charakterisierung der Bruchzähigkeit intermetallischer Phasen noch keine Bedeutung erlangt, auch wenn dies für die nähere Zukunft zu erwarten sein sollte [72].

Literatur

- T. Yokobori, Some Critical Questions and Future Directions for Fracture Research, Eng. Fract. Mech. 40 (1991), S.705-720.
- [2] H. Blumenauer, G. Pusch, "Technische Bruchmechanik", Leipzig: Deutscher Verlag für Grundstoffindustrie 1987.
- [3] K. H. Schwalbe, "Bruchmechanik metallischer Werkstoffe", München: Carl Hanser Verlag 1980.

- [4] D. Munz, "Bruchverhalten keramischer Werkstoffe Methoden und Ergebnisse", Fortschr.-Ber. der VDI-Z. Reihe 18 Nr.11, Düsseldorf: VDI-Verlag GmbH 1981.
- [5] B. Roebuck, J. D. Lord, Plain Strain Fracture Toughness Test Procedures for Particulate Metal Matrix Composites, Mater. Sci. Technol. 6 (1990), S. 1199-1209.
- [6] D. P. Pope, in: "High-Temperature Ordered Intermetallic Alloys II", N. S. Stoloff, C. C. Koch, C. T. Liu, O. Izumi (Hrg.), Pittsburgh: Mat. Res. Soc. 1987, S. 3-11.
- [7] G. Sauthoff, Intermetallic Phases Materials Developments and Prospects, Z. Metallk. 80 (1989), S. 337-344.
- [8] G. Sauthoff, Intermetallic Alloys Overview on New Materials Developments for Structural Applications in West Germany, Z. Metallk. 81 (1990), S. 855-861.
- B. Dogan, "Intermetallic Alloys: Deformation, Mechanical and Fracture Behaviour", Report GKSS 88/E/53, Geesthacht: GKSS-Forschungszentrum Geesthacht GmbH 1988.
- [10] A. H. Cottrell, Ductile Aluminium and Brittle Trialuminides, Mater. Sci. Technol. 7 (1991), S. 981-983.
- [11] P. Paufler, U. Krämer, C.-G. Oertel, Metallphysikalische Untersuchungen zur plastischen Verformbarkeit intermetallischer Verbindungen, Wiss. Z. TU Dresden 40 (1991), S. 93-98.
- [12] C. L. Briant, On the Chemistry of Grain Boundary Segregation and Grain Boundary Fracture, Met. Trans. 21A (1990), S. 2339-2354.
- [13] P. S. Khadkikar, K. Vedula, B. S. Shabel, The Role of Boron in Ductilizing Ni₃Al, Met. Trans. 18A (1987), S. 425-428.
- [14] A. I. Taub, S. C. Huang, K. M. Chang, Improved Strength and Ductility of Ni₃Al by Boron Modification and Rapid Solidification, Met. Trans. 15A (1984), S. 399-402.

- [15] M. Takeyama, C. T. Liu, Grain Boundary Contamination and Ductility Loss in Boron-Doped Ni₃Al, Met. Trans. 20A (1989), S.2017-2023.
- [16] V. C. Nardone, J. R. Strife, NiAl-Based Microstructurally Toughened Composites, Met. Trans. 22A (1991), S. 183-189.
- [17] J. D. Rigney, J. J. Lewandowski, Fracture Toughness of Monolithic Nickel Aluminide Intermetallics, Mater. Sci. Eng. A149 (1992), S. 143-151.
- [18] S. Reuss, H. Vehoff, Temperature Dependence of the Fracture Toughness of Single Phase and Two Phase Intermetallics, Scr. Metall. et Mater. 24 (1990), S. 1021-1026.
- [19] C. D. Turner, W. O. Powers, J. A. Wert, Microstructure, Deformation and Fracture Characteristics of an Al₆₇Ni₈Ti₂₅ Intermetallic Alloy, Acta Metall. 37 (1989), S. 2635-2643.
- [20] W. G. Smarsly, M. Dahms, "Microstructure and Mechanical Properties of Reactive Hot Isostatic Pressed TiAl Powder Material", Report GKSS 91/E/60, Geesthacht: GKSS Forschungszentrum GmbH Geesthacht 1991.
- [21] W. Wunderlich, T. Kremser, G. Frommeyer, Enhanced Plasticity by Deformation Twinning of Ti-Al-Base Alloys with Cr and Si, Z. Metallk. 81 (1990), S. 802-808.
- [22] K. S. Chan, Fracture and Toughening Mechanisms in an α_2 Titanium Aluminide Alloy, Met. Trans. 21A (1990), S. 2687-2699.
- [23] G. Frommeyer, R. Rosenkranz, C. Lüdecke, Microstructure and Properties of the Refractory ntermetallic Ti_5Si_3 Compound and the Unidirectionally Solidified Eutectic $Ti - Ti_5Si_3$ Alloy, Z. Metallk. 81 (1990), S. 307-313.
- [24] E. P. George, J. A. Horton, W. D. Porter, J. H. Schneibel, Brittle Cleavage of L1₂ Trialuminides, J. Mater. Res. 5 (1990), S. 1639-1648.

- [25] Y. Fahmy, J. C. Russ, C. C. Koch, Application of Fractal Geometry Measurements to the Evaluation of Fracture Toughness of Brittle Intermetallics, J. Mater. Res. 6 (1991), S. 1856-1861.
- [26] R. Wittmann, K. Urban, M. Schandl, E. Hornbogen, Mechanical Properties of Single-Quasicrystalline AlCuCoSi, J. Mater. Res. 6 (1991), S. 1165-1168.
- [27] T. Nose, T. Fujii, Evaluation of Fracture Toughness for Ceramic Materials by a Single-Edge-Precracked-Beam Method, J. Am. Ceram. Soc. 71 (1988), S. 328-333.
- [28] K. S. Chan, Micromechanics of Shear Ligament Toughening, Met. Trans. 22A (1991), S. 2021-2029.
- [29] J. Heerens, "Rißabstumpfung, Spaltbruch im Übergangsbereich und stabiles Rißwachstum - untersucht mit den Methoden der nichtlinearen Bruchmechanik", Dissertation, Report GKSS 90/E/31, Geesthacht, GKSS-Forschungszentrum Geesthacht GmbH 1990.
- [30] H. P. Keller, Ermittlung bruchmechanischer Kennwerte im duktilspröden Übergang, Materialprüfung 32 (1990), S. 232-237.
- [31] F. Zok, J. D. Embury, A. K. Vasudevan, O. Richmond, J. Hack, On the Influence of Hydrostatic Pressure on the Fracture of Ni₃Al, Scr. Metall. et Mater. 23 (1989), S. 1893-1897.
- [32] Verschiedene Autoren, in: "The Use of Small-Scale Specimens for Testing Irradiated Material", ASTM STP 888, Philadelphia: ASTM 1986.
- [33] G. E. Lucas, Review on Small Specimen Test Techniquesfor Irradiation Testing, Met. Trans.21A (1990), S. 1105-1119.
- [34] J. A. Begley, J. D. Landes, in: "Fracture Toughness", ASTM STP 514, Philadelphia: ASTM 1972, S. 1-20.
- [35] W. S. Walston, N. R. Moody, I. M. Bernstein, A. W. Thompson, Comparisons of K_{JIe} and K_{Ie} values from Tests on a Single Crystal Nickel-Base Superalloy, Scr. Metall. et Mater. 25 (1991), S. 1333-1337.

- [36] G. R. Odette, G. E. Lucas, R. Maiti, J. W. Sheckerd, J. Nucl. Mater. 133-134 (1986), S. 849-852.
- [37] J. Zhang, A. J. Ardell, Measurement of the Fracture Toughness of CVD-Grown ZnS Using a Miniaturized Disk-Bend Test, J. Mater. Res. 6 (1991), S. 1950-1957.
- [38] H. Li, F. C. Chen, A. J. Ardell, A Simple, Versatile Miniaturized Disk-Bend Test Apparatus for Quantitative Yield-Stress Measurements, Met. Trans. 22A (1991), S. 2061-2068.
- [39] X. Mao, M. Saito, H. Takahashi, mall Punch Test to Predict Ductile Fracture Toughness J_{Ic} and Brittle Fracture Toughness K_{Ic}, Scr. Metall. et Mater. 25 (1991), S. 2481-2485.
- [40] C. B. Ponton, R. D. Rawlings, Vickers Indentation Fracture Toughness Test Part 1: Review of Literature and Formulation of Standardised Indentation Toughness Equations, Mater. Sci. Technol. 5 (1989), S. 865-872.
- [41] C. B. Ponton, R. D. Rawlings, Vickers Indentation Fracture Toughness Test Part 2: Application and Critical Evaluation of Standardised Indentation Toughness Equations, Mater. Sci. Technol. 5 (1989), S. 961-976.
- [42] B. R. Lawn, E. R. Fuller, J. Mater. Sci. 10 (1975), S. 2016-2024.
- [43] K. Niihara, R. Morena, D. P. H. Hasselman, J. Mater. Sci. 1 (1982), S. 13-16.
- [44] A. G. Evans, in: "Fracture Mechanics Applied to Brittle Materials", ASTM STP 678 (Hrg. S. W. Freiman), Philadelphia: ASTM 1979, S. 103-111.
- [45] B. London, D. V. Nelson, J. C. Shyne, The Influence of Tempering Temperature on Small Fatigue Crack Behavior Monitored with Surface Acoustic Waves in Quenched and Tempered 4140 Steel, Met. Trans. 20A (1989), S. 1257-1265.

- [46] K. Krämer, Leitz Ultraschallmikroskop ELSAM Fortentwicklung und Anwendungen, Mitteilungen Wiss. Techn. 9 (1990), S. 233-236.
- [47] U. Eisele, E. Roos, Bestimmung bruchmechanischer Initiierungskenngrößen auf der Basis des J-Integrals, Materialprüfung 31 (1989), S.
- [48] F. Huang, in: "The Use of Small-Scale Specimens for Testing Irradiated Material", ASTM STP 888, Philadelphia: ASTM 1986, S. 290-304.
- [49] X. Mao, T. Shoji, H. Takahashi, J. Test. Eval. 15 (1987), S.30.
- [50] J. D. Bryant, S. L. Kampe, P. Sadler, L. Christodoulou, Effect of Phase Morphology on the Mechanical Behavior of Two Titanium Aluminide Composites, Met. Trans. 22A (1991), S. 2009-2019.
- [51] J. A. Horton, C. T. Liu, M. L. Santella, Microstructures and Mechanical Properties of Ni₃Al Alloyed with Iron Additions, Met. Trans. 18A (1987), S. 1265-1277.
- [52] D. A. Lukasak, D. A. Koss, The Flow and Fracture of a $Ti_3Al Nb$ Alloy, Met. Trans. 21A (1990), S. 135-144.
- [53] K.-M. Chang, Tensile and Impact Properties of Directionally Solidified Fe - 40Al Intermetallic, Met. Trans. 21A (1990), S. 3027-3028.
- [54] H. Gengxiang, C. Shipu, W. Xiaohua, C. Xiaofu, Plastic Deformation and Fracture Behavior of a Fe-modified Al₃Ti-Base L1₂ Intermetallic Alloy, J. Mater. Res. 6 (1991), S. 957-963.
- [55] T. Hanamura, R. Uemori, M. Tanino, Mechanism of Plastic Deformation on Mn-added *TiAlL1*₀-Type Intermetallic Compound, J. Mater. Res. 3 (1988), S. 656-663.
- [56] T. Kawabata, M. Tadano, O. Izumi, Effect of Purity and Second Phase on Ductility of TiAl, Scri. Metall. 22 (1988), S. 1725-1730.
- [57] A. de Bussac, G. Webb, S. D. Antolovich, A Model for the Strain Rate Dependence of Yielding in Ni₃Al Alloys, Met. Trans. 21A (1990), S. 125-128.

- [58] P. S. Khadkikar, J. J. Lewandowski, K. Vedula, Notch Effects on Tensile Behavior of Ni₃Al and Ni₃Al+B, Met. Trans. 20A (1989), S. 1247-1256.
- [59] E. Roos, A. Kapitany, Correlation of Fracture Mechanics Parameters with Charpy-Energy Based on Statistical Evaluation, in: Proc. ECF7 (Hrg. E. Czoboly), Budapest 1988, Band II, S. 1195-1197.
- [60] D. Aurich, Interne Studie, Bundesanstalt für Materialforschung und prüfung (BAM) Berlin, 1991.
- [61] H. J. Schindler, U. Morf, On Estimation of Fracture Toughness from Instrumented and Standard Charpy V-Notch Tests, in: Proc. 10th Congress on Material Testing (Hrg. E. Czoboly), Budapest 1991, Band I, S. 172-177.
- [62] K. Wallin, PVP Vol. 170, Innovative Approaches to Irradiation Damage and Fracture Analysis, The American Society of Mechanical Engineers, ASME, 1989, S. 93-100.
- [63] R. L. Fleischer, R. J. Zabala, Mechanical Properties of Ti-Cr-Nb Alloys and Prospects for High-Temperature Applications, Met. Trans. 21A (1990), S. 2149-2154.
- [64] R. L. Fleischer, R. J. Zabala, Mechanical Properties of High-Temperature Titanium Intermetallic Compounds, Met. Trans. 21A (1990), S. 1951-1957.
- [65] R. L. Fleischer, R. J. Zabala, Mechanical Properties of Diverse Binary High-Temperature Intermetallic Compounds, Met. Trans. 21A (1990), S. 2709-2715.
- [66] R. L. Fleischer, R. D. Field, K. K. Denike, R. J. Zabala, Mechanical Properties of IrNb and Other High-Temperature Intermetallic Compounds, Met. Trans. 21A (1990), S. 3063-3074.
- [67] R. L. Fleischer, R. D. Field, C. L. Briant, Mechanical, Elastic, and Structural Properties of Alloys of Ru-Ta High-Temperature Intermetallic Compounds, Met. Trans. 22A (1991), S. 129-137.

- [68] C. Kirsten, "Über Festigkeitseigenschaften intermetallischer Verbindungen", Diss. A, TU Dresden, 1963.
- [69] R. L. Fleischer, R. J. Zabala, Mechanical Properties of High-Temperature Beryllium Intermetallic Compounds, Met. Trans. 20A (1989), S. 1279-1282.
- [70] E. N. Klausnitzer, Micro-Specimens for Mechanical Testing, Materialprüfung 33 (1991), S. 132-134.
- [71] R. W. Nichols, "A State-of-the-Art Review of Continuous Monitoring and Surveillance Techniques in Relation to Reactor Pressure Circuit Integrity", Report EUR 13409 EN, Commission of the European Communities, 1991.
- [72] H. N. G. Wadley, Interfaces: The Next Challenge, in "Review of Progress in Quantitative NDE" (Hrg. D. O. Thompson und D. E. Chimenti), Band 7B, New York: Plenum Press 1988, S. 881-892.
- [73] B. R. Tittmann, M. Abdel-Gawad, K. Fertig, Ultrasonic Characterization of Microstructure in Powder Metal Alloy, Res. Nondestr. Eval. 2 (1990), S. 119-133.