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Abstract  

The aim of this work is to investigate threshold phenamena in the nuclear structure 
caused by the coupling to the continuum of decay channels using the continuum shell 
model. The model is outlined and some relevant results are stated. It describes an Open 
quantum mechanical system, the effective hamiltonian of which has complex eigenvalues, 
giving the widths and energies of the states. 

The first series of calculations are performed to investigate the properties of the eigen- 
value picture close to the elastic neutron threshold as a function of a parameter determin- 
ing the coupling strength to the continuum. The main results are the following: States 
with energies below the threshold (called negative states) can trap resonant states. An 
analytical reason for this fact is stated. The negative states can directly influence the 
Cross section. 

In the second series of calculations the expansion coefficients of the Open states in 
relation to the states of the shell model are investigated. The results help in the interpre- 
tation of the real and imaginary parts of the energgr dependent eigenvalues of the effective 
hamiltonian. Broad width of a state corresponds not only to short lifetime, but is also 
connected with similarity between the wasefunction of the state and a decay channel. 
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Chapter 1 

INTRODUCTION 

Selforganization is observed in different many particle systems. This topic concerns mainly 
the question how order spontaneously can occur in a non-ordered system. The clearest 
examples of selforganization exist in biology. Evolution theory and regulation mechanisms 
in living beings and echosystems are splendid examples, of that order spontaneously can 
occnr in nature without human interference. In chemistry a few examples are chemical 
watches and certain reactions where spatio-temporal patterns can occur. Typical for all 
selforganizating processes is the fast growth of certain fluctuations at the expense of other 
ones. Stabilisation occurs when the fluctuation can dominate a large region and 'enslave' 
the other possible fluctuations (trapping). The system can remain stable until a SUB- 
ciently large fluctuation destroys the stability. 

In physics the concept of selforganization is connected with a certain extra challenge, 
bccause at first sight it seems incompatible with the laws of thermodynamics[l]. One has 
to consider the system and its environment as a whole in order to overcome this problem. 
Selforganization in quantum systems is investigated up to now in a few cases only. Mostly 
the behaviour of the system is described by means of rate equations [2][3]. A full quan- 
tum mechanical description was performed first by Rotter and CO-workers for tlie nuclei 
[4][5]. By using the continuum shell model the nucleus is described as an Open quantum 
mechanical system. In [G] and [7] it has been shown that the redistribution in the nuclear 
system that occurs at a critical value of the level density shows accordance with the rules 
formulated by Haken [3] for selforganization. Two different timescales are formed at  high 
level density corresponding to short- and long-lived resonant states. This is the so-called 
trapping effect in resonance rcactions, corresponding to the slaving principle. which was 
formulated for the laser [J]. In both cases the number of relevant degrees of freedom is 
reduced by the redistribution taking place in the system uncler critical conditio~is. In [8] 
the formation of structures in space and time is shown to appear in the nuclear system 
due to the trapping effect. This is in qualitative analogy with the formation of structures 
formulated by Prigogine [I]. 

The neutron resonances analysed by Bohigas et al [9] are shown to fulfill tlie sta- 
tistical laivs for quantum Chaos. It has been shown that tlie trapped states (which are 
long-lived) also obey these statistical laws [10]. Thus the neutron resonances are suggested 
to correspond to the trapped states [SI. The neutron resonances are observed in tlie ver' 
neighbourhood of tlie elastic neutron threshold. Their widtlls and energy distances are 





Chapter 2 

DESCRIPTION OF THE MODEL 

The aim of the continum shell model is to describe the nucleus as an Open quantum 
mechanical system, i.e nuclear structure and nuclear reactions are treated in an unified 
manner. The niicleus is described by a direct numerical solution of the Schrödinger 
equation of the many particle system. Nucleons are assumed to move independently in a 
Woods-Saxon potential and the residual interaction between the nucleons are taken into 
accout by a two body delta interaction with spin and isospin exchange. The model is 
described in [5]. 

2.1 Closed system consideration 

2.1.1 Single particle solutions 

The first step is to describe the closed system as a system of many particles moving 
independen y in a central potential, 

Here is the Woods 
tion of the nuclear force 
it has a finite depth and 

-Saxen potential, which is a standard pheiiomenological paramckriza- 
inside the nucleus. The main features of this potential are that 
that it is weakiy state dependent. 

The potential is spherical syrnmetric, so we can separate thc variables. The single 
particle hmiltonian is 

First we define 



mhere C are the Clebsch-Gordan coefficients, fi, the spherical harmonics and X the spin 
matris. 

The single particle wavefunctions are 

Here X, is the isospin matrix and U the radial function which can be obtained by solving 
2.2. 'CVe get bound and unbound radial solutions, F, and V,. The n and 6 denote 
the principal quantum number of a discrete state and the energy of an unbound state 
respectively. 

2.1.2 Many particlestates 
The basic many particle states (called Slater determinants) are constructed choosing a 
proper configuration space out of the single particle wavefunctions. In doing so we consider 
a certain number of holes below the fermi surface and a certain number of particles above 
it, 

Here A is the antisymmetrised product operator due to the Pauli principle and the 
indistinguishability of the particles. a; denotes the quantum numbers for a particulary 
state used in the Slater determinant. 

The Slater determinants are by construction solutions of Ho: 

Note that the energies of the many particle states can lie above particle decay thresh- 
olds although they are formed out of single particle bound states. Therefore they are 
called Quasi Bound States Embedded in the Continuum, QBSEC. 

2.1.3 The two body residual interaction 

We noalv consider the full hamiltonian of the contiuuum shell model, 

H = Ho + VTes , (2.5) 

where, 

Here, P is tlie spin exchange operator and n is a parameter. In our calculations 
1." = .j0OAllcb' U = 0.73 and b = 0.25. In the closed system calculations we alvrays use 



01 = 01%" - - 1. 

With help of the Slater determinants we write a matris representation of this hamil- 
tonian: 

H, = ( j z l  I H 1 . 

Using this we numerically solve the shell model eigenvalue problem 

H"" I 4;") = Ei"" / 4;") . 

This gives us the shell moclel basis to be used later, 

The a, and the E?" are real. 

2.2 Coupling to the continuurn 

2.2.1 Projectors on subspaces 

In section 2.1.3, our full I-Iilbert space was constructed out of bound states only, but in 
the following we also take into accoiint the continuum. First we construct wavefunctions 
corresponding to certain decay channels: 

These functions describe the residual nucleus (A-1 nucleons) in a particnlary state nnd 
one particle in the continuum. We restrict our calculations to a certain number of states - 
in the residual nucleus and emission of only one particle (a neutron in my calciilatioris). 

We have projecton operators for the two different parts of our enlarged Hilbcrt spacc: 

n 

Q = E 1 dsm(4)(d?(-4) 1 (2.13) 
i=l 

Q projects onto the discrete states OE the excited compound nucieus a ~ i d  P onto thc sub- 
space of channels. consisting of tlie residual nucle~is and one particle in a scattering state. 

'1Ve have the follo~ing relations (apart froni maybe a nonpliysical phase'l. 



PlsE)=lxE) ;QlxE)=l0). (2.17) 

2.2.2 Full solution 

Next we consider the Schrödinger equation for the full continuum shell model problem, 

( H - E )  1 @ ) = O  

LVe split the hamiltonian using P + Q = 1. 

H = ( P + Q ) H ( P + Q ) = Q H Q + P H P + P H Q + Q H P  (2.19) 

What makes the continuum shell model different from other models is that we treat 
all forir parts of the hamiltonian with the Same accuracy. 

We also split the wavefunction, 

l @ ) = Q l @ ) + P l @ ) .  (2.20) 

For simplicity we define Q I @) = @Q, QHQ = HQQ and so On. 

Inserting the 2.19 and 2.20 in 2.18 and multiplying to the left with P and Q respectively 
gives the following relations 

(E - HPP)P I @) = HPQQ I @) (2.21) 

This is a coupled differential equation system for @P and QQ which we now solve. 
Homogenous solution of 2.21 : 

Particular solution of 2.21 : 

P is the Green function in P space, i.e. the propagator She function GY) = PE+-Xpp 
in P space. 



The total solution of 2.21 is 

P / @) =I E$+)) + G $ + ) H ~ ~ Q  1 

Equation 2.22 implies 

Inserting 2.25 in 2.26 and solving for @Q yields 

Now we clefine: 

e f f  H 
HQQ - QQ + H Q F G $ + ) H ~  . 

H;$is the effective hamiltonian. 

Using 2.20 for I q), and inserting two projection operators one can show 

Changing to the representation of eigenvectors and eigenvalues of HG;: I Q>R) and $ 

and I wR~' )  defined in analogy with 2.28 one can show 

Above was used that HQP = QVTeSP. 

Summarising, 2.31 gives us a coinplete espression for the wavefunction of the contin- 
uum shell model problem. To use this formula we need to solve (apart from the bound 
state problem) the following three equations, 



The last equation is equivalent to / &F)) = G P ) H ~ ~  / 8,). 

The ER are complex because H;: is non-hermitean and thus we define: 

Note also that the eigenfunctions OE H;: cau be represented as a linear combination 
of the eigenfunctions of HQQ, 

where the coefficients b, are complex. It holds lYi/' = 1 while 1&lz 2 1. In the 
numerical calculations the bound state problem is solved only once with a: = a" n 1 in 
2.8. In the investigations we vary ae", which is the parameter for the residual interaction 
V for the continuum hamiltonian. Varying aa thus is equivalent to varying the strength 
of HpQ and HQp, i.e. the strength of the mixing between the two subspaces. 

2.2.3 Cross section 
The experimentally measurable value we can calculate in this model is the Cross section. 

First derive the S-matrix. 

In [lS] the C-matrix is defined as follows: 

The partial width of a resonance is rc =I YR, 1' [lS]. 



One can show 

and 

The first term s$? describes all processes that can take place without coupling to the 
Q-space. This is called the direct reaction part. The second part s!::) desribes the possibil- 
ity of creation and decay of a compound nucleus in the states R, i.e. the resonant part [E]. 

The C-matrix gives the cross section 

E und m are energy and mass of the incoming particle. 

The S-matrix is unitary and thus I Sc=, I< 1. 

In the case of isolated resonances is a simple way to study the cross section to find 
the poles of the S-matrix. From 2.39 and 2.41 we can See that the complex poles of tlie 
S-matrix are at the energy values of the fixpoint solutions, 

ER and I I R  = PR(ER) describes energy and width of a resonaace. 

It should be noted that as CR is energy dependent ER and do not give all tlie 
information about the shape of isolated resonances. In the case of high lese1 density apart 
from this also different kinds of interference effects will take place. 

2.2.4 Some final comments 

The mavefunctions of the resonant part of 1l consist of two Parts, 1 6i) arid 1 G!+'). 
The I C$)) functions are important. They hwe an overlap to the channel wave func- 
tions and thus describe the fact that d e n  we couple the QBSEC to the continuum, the 
corresponding states can decay. 



Kote also that the non-hermitean part of the effective hamiltonian is QHP * G p  * 
PHQ = Q V P  * Gp * PVQ. As the strength of V is governed by the parameter aex, 
increasing aex means increasing the non hermitean part by about (ae")z . The non- 
hermitean part is responsible for the eigenvalues beeing complex. Therefore when we 
increase cue" we expect the imaginary part of the eigenvalues of the effective hamiltonian 
HG$ to increase. 

For a part of the discussion a simple S-Matrix model bas been used [lS]. N bound states 
and I< Open decay channels couple to the bound states I <P;). The hamiltonian is 

By derivation of the S-matrix an effective hamiltonian, that describes the poles of the 
S-snatrix, can be defined. Far from thresholds the coupling vectors can be considered as 
energy independent and for time invariant processes they can be chosen real. The effective 
hamiltonian for this model is then 

V can be choosen in an arbitrary way, and thereby the coupling strength of different 
states to a certain decay channel can be controlled. Also Ho, that describes the result of 
the internal mixing and which is diagonal, can be choosen in an arbitrary way. 



Chapter 3 

SUMMARY OF SOME 
RELEVANT RESULTS 

The aim of this chapter is to give a brief Summary of some earlier results which are 
important for the interpretation of the results obtained when including threshold effects 
[5-7, 11-16]. 

3.1 The trapping effect in an ensemble far from 
t hreshold 

An ensemble of 70 states with quantum numbers J- = 1- and energy between 22 anci 
44MeV has been investigated for two Open channels in [6]. The energy of the system, Eta*, 
is chosen to be constant (34.7Mev). The parameter aex for the strength of the residual 
interaction that couples the bound states to the continuum was varied in [6] between 0 
and 10. The experimental value of aeX is between 1 and 2. As the nuclear force incseases 
wc espect the widtb of the resonances to increase. Thus increasing aex means incseasing 
&, where I' is the average midth and D the average distance of the resonances. The aini 
of the investigations was to study the same states under different conditions and thiis ein 
was always 1. The eigenvalue picture was studied, i.e. the real and imaginary parts of 
the eigenvalues of the effective hamiltonian 2.29 rvere plotted shown in the Same plot for 
all ae5. 

The main features of the eigenvalue picture of the ensemble considered are as follows. 
.4s a" increases from Zero so do the widths of all the resonances. At a critical value 
of aex, that lies between 2 and 3, the widths of two resonances start to increase rapidly 
\vhereby the widths of all the other ones decrease. This effect is calied trapping. At still 
[arger aex a hierarchically order is formed, i. e. some of the trapped states can be slightly 
broader at the expense of some other states. The number of broad states is esactlv eyiial 
to the number of Open decay channels. 

The two broadest states espire a large sliift in tbeir energy posilion. IVheri thesc stak$ 
are shifted far away from the region where the remaitiing staites arc lying, two iiew states 
can become broad (second generation) and so on [6]. 



In [ G ]  it is also shown that the value / 6, 1' becomes large whenever two states get 
into 'conflict' with each other. Conflict means that two states, for a given aex, are very 
close to each other in the complex eigenvalue plane. For a slightly larger ae2, the two 
states have 'decided' which is to 'win'. One of them gets trapped and the other one can 
grow broader. The I 6,  1' decrease to values close to one (in the closed system with the 
hermitean operator HQQ, this value is normalized to one). 

What is described above are the general features of the trapping effect. It is also called 
slaving principle and is an example of selforganization in the nuclear system. 

3.2 The tail and the cusp 

To consider E; = E ~ ( E )  + ; F i ( ~ )  as a function of energy gives rise to some new features 
when considering isolated resonances. It is generally not true that we can explain thc 
resonant part of the cross section by writing Breit-Wigner shapes at the positions of the 
poles of the S-matrix (corresponding to the fixpoint solutions 2.43 of the effective hamil- 
tonian). 

In [5], pp 648, the shape of a single resonance close to the opening of an inelastic decay 
channel is investigated. As usual the width ?R(E) of the resonance rises strongly at thc 
threshold energy. 

Consider a resonance with fixpoint solution energy slightly below the threshold. These 
it has a small width. If one calculates the complex energy eigenvalue for an energy slightly 
above the resonance, the imaginary part, corresponding to the width, will be larger. The 
cross section thus 'sees' a broader peak from above the threshold and in the cross sec- 
tion these two pictures have to be 'fitted', giving rise to an unsymmetric resonance shape 
showing a long tail to higher energies. 

If a resonance happens to lie exactly at the threshold energy the cross section 'sees' 
two pictures at the same point: a narrow peak for energy going down and a broad peak 
for energy going up. These two pictures are 'fitted' giving rise to a 'cusp' in the cross 
section. 

The energy dependence of the complex eigenvalues thus implies strange features in tbe 
cross section for single resonances. This is a justification for looking at these eigenvalues 
not only at the fixpoint solutions. 



3.3 Interference phenomena for overlapping reso- 
nances 

The cross section can be calculated from the S-matrix with 2.42. Due to the unitarity of 
the S-matrix (implying I S /< 1) the cross section can not be arbitrarily large. Therefore 
one can not simply add the contributions from the single overlapping resonances to re- 
produce the cross section, but different kinds of interference phenomena occur. 

If one has large broade states surrounded by smaller narrow ones, the smaller ones are 
often visible as dips instead of peaks in the cross section. This is caused by the fact that 
the broade state has already reached almost the maximum value for dot. 

Finally it should be noted that in the case of more than one Open decay channel and 
high level density, the trapped states are not visible as narrow resonances in the cross 
section but as fluctuations [5]. 

3.4 Level repulsion 

The trapping effect can be considered as an avoided resonance overlapping in analogy to 
avoided level crossing of discrete states [14]. As long as 5 approaches unity all the reso- 
nances becomes broader (I? and D defined as in section 3.1). For 5 2 1 a redistrubution 
takes place giving almost all of the sum of the widths to a small number of states (two 
in the case of two Open decay channels) so that the widths of the trapped states start 
to decrease. Even though the broad states overlap many of the smaller ones, the smaller 
states will almost not overlapp their narrow neighbours. 

We can also see level repulsion in the eigenvalue picture. When two states are getting 
close in this picture (for a certain P) they come into conflict and for slightly larger 
ae" one of the two states will be trapped and the other can grow broader. The point is 
that the two resonances will avoid each other. This can be intuitively understood if we 
consider the complex eigenvalues as the poles of the S-matrix [14]. The pole corresponds 
to a whole mountain in the S-matrix landscape. Obviously it is unfavourable for the 
system to manage a 'penetration' of these mountains. 

3.5 Order and chaos 

Trying to characterize the wavefunctions of a system as ordered or chaotic is dificult. 
Using the degree of mixing versus a certain (intuitive) basic set has the disadvautage of 
being basis dependent. One can often find another basis relative to which the mixing is 
smaller. In [SI, pp 671, the psoposal is made that both level repulsion aud high degree of 
mixing characterize chaos. 



The mixing of the complex wavefunctions versus the Slater determinants or versus the 
states of the corresponding closed system (shell model states) is investigated in [7]. For 
small aeZ the wavefunctions of the Open system can be approximated with the wavefunc- 
tions of the closed system. The system is ordered and the information entropy is low. 
As ae" approaches the critical value a redistrubution takes place. All the wavefunctions 
of the states in the Open system are mixed in the representation of the wavefunctions 
of the closed system. The system is chaotic and the information entropy approaches a 
masimum. Level repulsion occurs. The spectroscopic information of the closed system is 
lost. 

This transition to chaos however is accompanied by the formation of a new order. If 
one vvants to describe the closed system one has to take into account all the states (70 
in the paper [7]). If one wants to give a relevant description of the Open system at high 
level density and short timescales however, it is sufficient to describe the broad states 
(2  in [T]), because we will not see the long lived states. Thus the relevant infozmation 
entropy decreases. This is the reason why we call trapping a selforganizing effect. The to- 
tal information entropy however increases and thus no %hermodynamical laws' are broken. 

The Open system is also ordered in yet another way. In the closed system represen- 
tation, the broad modes are strongly mixed. In the channel wavefunction representation 
however, they are almost completely pure due to their strong coupling to one of the chan- 
nels respectively. This is a consequence of the fact that a broad state has a short lifetime, 
which implies a large overlap to a decay channel. 



Chapter 4 

AN ENSEMBLE CLOSE T 0  THE 
ELASTIC THRESHOLD 

In our investigations [6][7][5], the solving of the closed shell model problem is made in 
a special program writing data to files. These datafiles define our operator HQQ with 
eigenfunctions, eigenvalues and also the matrix elements of the operator He+ We can 
alter the eigenvalues in an arbritrary way keeping all the other data unchanged before 
solving the continuum shell modeI problem. This gives rise to a new completely legal 
matrix representation of an operator, still called HQQ, but we can not write an analytical 
expression for it, and to what extent this operator has anything to do with nuclear physics 
is a question for the discussion. 

In previous calculations [6] the behavior of a 2p-2h QBSEC ensemble with 190 mem- 
bers and J" = 1- at the calculated energies between 20 and 43 MeV for the Q-value 
12.691 MeV was investigated. This is weil above both the elastic threshold (at 0 MeV) 
as well as the first inelastic threshold at 6.149 Mev. These two channels were the only 
channels consiclered in the calculations. Both channels are really Open because tlie systern 
energy is well above both thresholds. Scattering of protons on 15N was considered. 

To investigate threshold effects we used the same ensemble and decreased the real 
energy eigenvalues of HQQ by e.g. 23 MeV. Tlie neiv closed system energies, con~plex 
eigenvalues of the effective hamiltonian and so on are marked witli a prinie. .A sim~jle way 
to justify this shift is to note that it is simply equivalent to increasing tlie Q-valuc. In 
our calculations also the Q-value, which is defined as the energy difference between the 
ground state of the compund nucleus and the elastic threshold, is increased by e.g. 8 MeV. 

In man? of the calculations the eigenvalues of the effective hamiltonian 2.29 wcre cal- 
culated at a certain fixed energy E = Etab of tlle system. It is important to reniember 
that we do not solve the fixpoint equation. Therefore statenients can only be made abotit 
the real and imaginary part of these eigenvalues. 

The off-diagonal elements of H p p  describe t l e  fact that the chanriels also couple to 
each other. Therefore a state that is decoupled from a certnin tleca- cliarinel can still 
feel the opening of tliat channel. To investigate this Feature tlie channel-channel couplirig 
can be turned off in the program, i.e. the off diagonal elenients of I i p p  can be forced 



to be zero. Unless otherwise stated the calculations are performed with channel-channel 
coupling on. 

4.1 Nurnerical results for the ensernble 

This chapter describes the results of a series of calculations made with the same ensernble 
as used in [6]. It has 190 members of 2p-2h nuclear structure and J" = 1-. For a &-value 
of 20.196 MeV it has QBSEC energies of between 10 and 45 MeV. The experimental 
Q-value is 12.691 MeV. Elastic neutron scattering was always considered (E=O MeV) and 
in a few cases also inelastic scattering with the threshold at E& = 6.149 MeV. 

10 15 20 25 30 35 40 45 

[MeV] 
Figure 4.1: The eigenvalue picture for 190 resonances and 2 neutron channels by varying 
cue" from 0.05 to 8.65 in steps of 0.05. E,=& = 29 MeV, Q = 20.691 MeV, E" = 6.149 MeV 
and Eim = E„. 

4.2 Original ensernble 

For later comparison the eigenvalues of the ensemble at its original place far ffrom thresh- 
olds was calculated for cue2 varied from 0.05 to 8.65 in steps of 0.05. Eta& = 29 MeV, 
Q = 20.691 MeV, E& = 6.149 MeV, and E:, = E„ (Fig. 4.1). For small cueZ there is 
a spectroscopical dope which is removed for large cu" (eg 5) by the trapping effect. The 



first two broad states arise from the lovver part of the spectrum. 

4.3 Cross section without tail 

In fig. 4.2 a cross section for ae2 = 1.5, Q-value=20.691MeV, Eim = E„ - 25MeV and 
one neutron channel is shown. The values are chosen so that the negative states close to 
the elastic threshold are trapped. 

In the cross section we can see a narrow resonant state close to the threshold and a 
small tail with interference effect from a narrow negative state close to threshold. 

4.4 Cross section showing a 'tail' from a discrete 
state 

A cross section with aex = 2.5, Q=S.391 MeV, one neutron channel and E:, = E„ - 
25MeV is shown in fig. 4.3b. In the corresponding eigenvalue picture (fig. 4.3a) we 
can see that the broadest state lies just below the elastic threshold. We can not solve 
the fixpoint equation 2.43 for this resonance because the border conditions for neutron 
scattering inherent do not allow for a solntion at negative system energies. Furthermore, 
three trapped states slightly above zero were deleted to make the situation clearer. 

The resulting cross section has much larger values close to Etab = 0 than the direct 
part although there is no broad resonance close to this energy. This difference shows the 
influence of the negative state that would be a resonance if the Q-value would be slightly 
higher. 

4.5 Varying Elab for fixed aex 

In this series of calculations (figs. 4.4 and 4.5) the energy Ela6 of the system was varied 
while ae" was fixed to ac" = 1 and 4 respectively. Eh = ER - 25 ILleV, and Eiab is varied 
from 0.01 MeV to S.2 MeV in steps of 0.05 MeV. E* = 6.149 MeV. Ghannel-channel 
coupling is both turned on and off. The common features for all plots shown are that the 
opening of the inelastic threshold enables an extra state to become broad. The first broad 
state is still the broadest one alter the opening of the second threshold. For E{.& + 0 all 
F R  + 0. 

For ae" = 1 a change in the derivative can be seen at the inelastic threshold for the 
first broad state for both channel-channel coupling on and off (fig 4.4a and b). This 
implies that the broadest state is not almost completely coupled to only one channel. 
In the eigenvalne picture (f~g. 4.5a) almost no trapping can be seen. These is a dope 
in the width of this picture; for all energies thc FR of the states at larger resonance 
energies are smaller than the FR of states at  lower energies. The real part of the eigenval- 
ues of H:$, ER, are almost independent of the systern energy. Eia*, for most of the statrs. 



Figure 4.2: Cross section for aez = 1.3, Q-vaiue=20.691 MeV, E& = E„ - 25 MeV , 
one neutron channel. 
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Figure 4.3: The imaginary parts 2 oof the 190 states for n" = 2.5, Q 4 . 3 9 1  MeV. 
Ei, = E„ - 25 MeV for one nentroit channel (a) and the corresponding Cross section 
(b). 



a) aex=i, CC = on. 

Figure 4.4: The imaginary parts of the eigenvalues of H G ,  as a function of Elab for oez=l 
aud 4, Q=20.691 MeV, E" = 6.149 MeV and Efi = ER - 25 MeV. 



A very pure example is shown for ae= = 4. For channel-channel coupling off, the first 
broad state does not notice the opening of the second channel (fig. 4.4c), which implies 
that the state is almost purely coupled to the first channel. The slope in the width is 
still there. Trapping and energy shift of the low-lying states occur (4.5b). There is also 
a third hroad state, which is significantly broader than the trapped states but narrower 
than the first hroad state and also narrower than the second broad state after the inelas- 
tic threshold has opened. This third state does not feel the inelastic threshold. &(E) is 
almost constant for ail bnt the broadest states. 

Finally and quite obviously the maximumfor the width of the broadest states increases 
strongly with increasing cue". It is approx. 0.3 and 13 respectively for the two considered 
cases. 

-15 -10 -5 0 5 10 15 20 -25-20-15-10 -5 0 5 10.15 20 
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Figure 4.5: Eigenvalue picture for 190 resonances by varying El,a from 0 to 8.2 UeV for 
cue"=l and 4. Q40.691 MeV, E;h,=6.149 MeV and ER = ER-% XeV. Channel-channel 
coupling is On. 

4.6 The ensemble around Zero 

In these calculations, the following values are used: &,b = 4 MeV, ER = E R  - 25 
MeV, & = 20.691 UeV and only one Open channel. cue2 is varied from 0.05 to 8.65 in 
steps of 0.05 (fig 4.6). 



Figure 4.6: Eigenvalue picture for 190 states by varging aeZ form 0.05 to 8.65 in steps of 
0.05(a) and FR as a function of aex (b), Eiah = 4 hIev, Eh = ER - 25 MeV, Q = 20.691 
MeV anci one neutron channel. 





Figure 4.7: Eigenvalue picture for 190 states when varying rr12 from 0.05 to 8.65 in steps of 
O.OS(a) and f ' ~  as a function of ae5(b) for &,b = 15itleV, E& = ER - 25 MeV, Q = 20.691 
MeV, and two neutron channels. 



Figure 4.8: The eigenvalue picture for  EI,^ = 4 hlcv and cu'" varied from 0.05 to 8.65 in 
steps of 0.05 with a gap introduced around ER = O(a) and versus rue--ab) Q = 20.691 
XIeV, Eh = ER - 2.5 hIeV, 01113 neutron channel 



4.9 Energy reversal of the ensemble 

To see if the dope in the widths of fig. 4.6 is purely an effect of the internal structure or 
also an effect caused by the variation in resonance energy we simply swapped the energies 
of the unperturbated states around the center of the ensemble (Fig. 4.9). 

This gives rise to two different regions for ae". For small aex the dope is reversed. 
This implies that the dope for small cuez is caused by the internal structure of the states. 

As a" approaches 5 however, the l ? ~  of states at small resonance energies grow faster 
than the gamma values for states at higher resonance energies. This results in the fact 
that for aex = 5 there are trapped states in the whole ensemble and the of all the 
trapped states are of the Same order of magnitude. The first broad state comes from the 
higher energy region, but the rest comes from the lower energy regions. 

-1 0 -5 0 5 10 15 2 0 
[MeV] 

Figure 4.9: The eigenvalue picture for aex varied from 0.05 to 8.65 in steps of 0.05 for 
EIab = 4 hIe\J and ER swapped around the center. Ek = ER - 25 MeV, Q = 20.691 MeV 
and one neutron channel. 



4.10 Cross section of two states around Elab = 0 MeV 

To make things as simple as possible, we have investigated the cross section of a system 
with only two resonances. One of the resonances is just below the elastic threshold ancl 
one slightly above (fig. 4.10). Curve (C) shows the cross section calculated with only 
the negative state. One can See the tail when comparing with the direct part (curve 
d). Curve (a) is the cross section calculated with only the resonant state, which shows 
an interference minimum for low energies. Curve (b) shows the interference effect for 
the cross section calculated with both the states. The influence from the negative state 
removes almost completely the effect of the resonance in the very neighbourhood of the 
elastic thresholcl. What still can be Seen is an interference minimum followed by a peak 
and the tail of the resonance. Obviously, the two states repulse each other. 

E Lab [MeV] 

Figure 4.10: Interference in the cross section between one negative state (at -0.07 MeV) 
ancl a resonant state (at 0.7 MeV). Curve (a) shows the resonant state without any 
interference and curve (b) shows the interference between the two states. Curse (C) shom 
the Lai1 of the negative state and curve (d) the direct part. 



Figure 4.11: Interfcrence in the S-matrix model for two states at different ae5. Thc 
corresponding Breit-Wigner shapes are shown dashed. 



4.11 Interference of two states 

In section 4.10 we took a closer look at the interference in the cross section between dif- 
ferent states. To investigate this further the S-matrix model (sec. 2.3) was used. The 
wlue 11 - SI2, corresponding to the cross section, was studied as a function of the energy 
[16]. This value can not be larger than 4 due to the unitarity of the S-matrix. Two states 
with energy +0.1 ancl -0.1 were iised. Both states are however unbound, because there 
are no thresholds in the model used. Additionaly, the corresponding Breit-Wigner shapes 
were calculated from the corresponding real and imaginary part of the eigenvalues of the 
effective hamiltonian. 

For a small cue" (O.OS), well below the critical point, the energies of the states are not 
shifted and the widths are rather small. The states are well isolated. Nevertheless, the 
interference between the states gives rise to a visible differente between the Breit-Wigner 
shapes of the states and the calciilated cross section. 

At the critical point, ae" = 1, the tvvo states lie at the same energy (0 MeV) and 
have the same widths. In the calculated cross section, however, an interference minimum 
exists at E=O. Naively one could interprete the calculated cross section as arising from 
two isolated states starting to interfere. 

For a large ae" (4), both states still have the same energy, but one state is broad and 
the other one narrow. The narrow state is visible as a dip in the structure of the large 
one. 



Chapter 5 

DISCUSSION OF THE RESULTS 

5.1 Absence of threshold in the eigenvalue picture 
In 4.5 it is shown that the shape of the eigenvalue picture is dependent on the energy of 
the system. The question for this section is what infiuence the shift of the closed system 
energies 'by hand' in our calculations could have. 

We looked at the eigenvalues of the effective hamiltonian, ~ ( E ' c f  = HQQ + HQPG;HPQ, 
and in the used representation HQQ is diagonal with the shifted closed system energies Eh 
minus the Q-value as elements. The ZR are the solutions of the matrix eigenvalue equa- 
tion 2.33. It is always true that for a matrix M with eigenvalues E, i.e. (M - E)X = 0, 
ILI -t M + c I  implies E -+ E + c. 

To put this in other words for our case: When solving 2.33 with eigenvalues of HQQ 
shifted to around the elastic threshold, we could always first add 1000 MeV to the shifted 
energies and then subtract 1000 MeV from ER, thus being very far from the threshold 
when solving. Therefore the shift of the shell model energies and the actual position 
of the threshold can have no other infiuence whatsoever to the shape of the eigenvalue 
picture but the positon of Zero of the energy axis. These can not be any thresholds in 
the eigenvalue picture calculated at a fixed energy of the system. States therefore can 
have negative resonance energy and a finite imaginary part of the effective eigenvalue (of 
course calculated at positive energy of the system). The problem is only how to interprete 
these values. We call states with negative resonance energy 'negative states' and states 
with positive resonance energy 'resonances'. 

It should be noted that this discussion does not apply to the Cross section, because it 
depends explicitly on the energy Ei,& of the system and it can be calculated already from 
2.30 mithout diagonalizing of H;$. Furthermore, when solving the fix point equation 
2.43 of course tlie actual position of Zero of the energy axis is important. 

From this discussion it follovvs that we do not have any reason to suspect any new 
phenomena in the eigenvalue picture close to the threshold. The trapping ought to be 
observable, and that is what the numerical results show, indeed. 



Furthermore, by changing the border conditions the negative states could be studied 
directly. The reaction (d,p) corresponds to a neutron reaction with negative energy. Also, 
photon reactions could be considered. For negative energies of the system , the second 
term of H;: (2.29), QVresP * Gp * PVTeSQ, can not have an imaginary part; but the real 
part still can mis the states and thereby giving a correction to the resonance energies ,& 
and wavefunctions 6 ~ .  

5.2 Effects at low energy of the system 

We consider the shape of the eigenvalue picture for Eia6 = 4MeV described in 4.6 and 
ignore the threshold. 

The striliing feature is the slope: smaller widths for states at larger resonance energies. 
This slope is much more pronounced at Ei,& = 4 MeV than at  29 MeV. In section 4.9, 
the slope is understood as an effect of both the internal and the external mising, both of 
which prefer states with lower resonance energies. The reason why the lower energies are 
prefered is that the nuclear force is attractive. 

For the selected shift and Q-valne the slope does imply that the 'broadest' states are 
negative states. For reasons that will be explained in chapter 6, we do call these states 
'collective' states. 

5.3 Cross sections 

In 4.3 we would naively see a new effect: an ensemble at high level density withont a 
broad state. This would contradict the earlier results concerning the slavi~ig principle. 
However, from the eigenvalue picture 4.6a, we give a different interpretation: tlie 'broad' 
state was formed in the negative part of the spectrum. 

From the figure 4.3 we learned that the negative states also directly can infiience Lhe 
cross section. A collective state that would have had a certain width and a certaiii energy 
if the energy shift was slightly smaller still can show its tail in the resonant part of the 
spectrum. 

It should be noted that this kind of effect can be Seen in the neutron scattcring but 
is difficult to See in a cross section for proton scattering, because the Coulomb repdsion 
implies that the cross section has to go to Zero as the lab energy gocs to Zero. 

Finally, the two sections 1.10 and 4.11 give a strong warning when trying to identify 
states in a measnred spectrum. Ttie interference bet,ween the s t a k  can give rise to strnilge 
results. 



5.4 Neutron Resonances 

The result that the negative states can trap the resonant states is of special interest for 
the neutron resonances lying in the very neighbourhood of the elastic threshold. In the 
cross section for neutron scattering at heavy nuclei, a set of narrow resonances close to 
the elastic threshold can be Seen. They have widths in the order of keV, or even eV, and 
spacings of the same order of magnitude. The states are well separated. 

From our investigations a possible explanation for this phenomenon can be stated: It 
is possible that these resonances are trappen by a collective state. It is known that the 
wavefunctions of the neutron resonances are strongly mixed, which, in combination with 
the fact that they are close to the threshold, leads to their small widths. Strong mixing 
is a signature of trapping. Furthermore, single-particle resonances exist and are often 
discussed in order to explain the observed correlations between the neutron resonances 
[17]. They may correspond to our broad states. 

As a conclusion of this chapter I show some measured total neutron cross sections close 
to the elastic threshold for uran from [19], fig. 5.1. We can see the typical energy scale 
eV or keV and the iuterference effects between states at high level density as discussed in 
section 4.10 and 4.11. 



Figure 5.1: Measured neutron Cross sections for uraii fioin [19]. 



Chapter 6 

NUCLEAR STRUCTURE OF 
STATES AT HIGH LEVEL 
DENSITY 

As stated in 2.2.3 the solutions of the fixpoint equation 2.43 are considered to describe 
the width and energy positions of exited states in the compound nucleus. To consider 
an ensemhle of states around the elastic threshold gives rise to some difficulties. When 
studying neutron scattering reactions, states below the elastic threshold can not be stud- 
ied directly, because the kinetic energy of the neutrons is aIways positive. The negative 
states do not exist in these investigations, and they certainly do not have the possibility of 
decaying into a neutron channel. The fixpoint equation 2.43 can not be solved. The states 
could be investigated by using other reactions, but this chapter concerns the question how 
to interpret the complex eigenvalues of the effective hamiltonian 2.29 in the case neutron 
scattering. 

The simplest interpretation is possible on the basis OE the results given in chapter 4. 
As the negative states can trap the resonant states and also directly infiuence the cross 
section, we could loosely say that the combination of width and negative energy position 
of a negative state gives us a measure of how much that state could infiuence the positive 
energy area. Making such a statement however is very qualitatively. How broad a dis- 
tant state has to be to be able to trap states is not quantitatively understood. Further, 
because of the interference effects between the states the infiuence of a certain state to 
the cross section is a complicated question. The aim of this chapter therefore is to try 
to understand what a large imaginary part of an eigenvalue of the effective hamiltonian 
means in a way that does not include the question of lifetimes or widths. 

In 5.1 it was stated that when considering the complex eigenvalues at a certain energy 
Etn6 OE the system, the threshold can have no effect at  all. Therefore, when an under- 
standing of the complex eigenvalues can be found far from threshold, it must also hold 
close to threshold. 



Figure 6.1: The absolute value of the expansion coefficients for one trapped QBSEC versus 
the shell model states for five different uex. Ei,* = 29 AleV. Q = 20.691 AIeV. E' = 6.149 
MeV, E:, = E„ and ae* = 0.05, 0.5, 1.5, 3.0, 10. 



6.1 Distribution of the coefficient expansion 

This section deals with the question to what extent any relation between the FR and the 
complex expansion coefficients bm' of 2.36 can be established (fig. 6.1). 

The situation for small aex alrnost exactly corresponds to the closed system. Thus, 
for a state R' with energy ER, and the state R with the corresponding energy, bm, will 
be alrnost real and almost equal to one, and all the other coefficients will be almost zero. 

As ae" , and thereby FR, grows, we can see a distribution in the plot of the absolute 
value of the coefficients versus the shell model energies. The width is centered around 
the state R and expires alrnost no shift that would corcespond to the shift of ER. The 
distrihution has a width according to F R .  

For larger aec, when FR of the trapped states start to decrease, the inverse is not true 
however. The width of the distrihution in the coefficient pIot does not decrease with FR. 

Figure 6.2: Eigenvalue picture in the S-matrix-model for a varied from 0.02 to 2 in steps 
of 0.02 for syrnmetric and asymmetric initial position of 4 resonances. 



Coupling vector 
Symmetric Asymrnetric 

Figure 6.3: 1 CR, b R n r  I versus ne' for syrnmetric and asyniti~etric decay cliarinel and 
selection of initial energies. 



6.2 Rotation of the broad state 

In the simple S-matrix model (described in 2.3) aez has been varied for four cases 1161. 
V = am * V'. In all cases four states were used, one channel was Open and ae2 varied 
from 0.02 to 2 in steps of 0.02. Ho was chosen symmetric(-1,-1.33,1.33,1) or asymmetric 
(-1, -0.8, 1.33,l). The vector V', describing the coupling to the decay channel was chosen 
(0.5, 0.5, 0.5, 0.5), i.e. symmetric, or antisymmetric, (0.5, -0.5, 0.5 ,-0.5). 

The eigenvalues are shown for symmetric and asymmetric initial position of the ener- 
gies of the states in fig. 6.2. The eigenvalues do not distinguish between symmetric and 
asymmetric channel channel. In 6.3 the average of the coefficients N I CR, b ~ ~ t  I versus 
a" is shown for the four states in the four cases. 

The interesting fact is that for the two cases with symmetric coupling vector, the sum 
& I CR, bRRt I for the broadest state has the largest value. In the asymmetric cases it 
has smaller values. Of special interest is the asymmetric-asymmetric case. The broadest 
state has the largest value for the average of the coefficients only at small aez. As ae" 
approaches the critical point (aez = 1) we can clearly See that the average starts to de- 
crease and for ae" = 2 the broad state has the second smallest average. 

The interpretation of this section is as follows: For small aCx the state vectors point 
into the direction of the closed system (one coefficient equals 1 and the rest 0, i.e. the 
sum is 0.25). As cum increases, the states start to rotate.. The state that will achieve 
a short lifetime, must rotate into the direction of the decay channel. The corresponding 
average for the coupling vector describing the decay channel is 0.5 for the symmetric case 
and 0 for the asymmetric case. 

6.3 Discussion 
For small ae", the state vectors point in the hilbert space in the direction of the states of 
the corresponding closed system. When F R  grow, the states rotate into the direction of 
the decay channel. When the f ' ~  of the trapped states start to decrease must the vectors 
of the trapped states rotate in an arbitrary direction away from the structure of the de- 
cay channel, but not necessarily in the direction of the corresponding closed system vector. 

All these results are qualitatively understandable: The width corresponds to the in- 
verse lifetime, and the lifetime is governed by the degree of overlap between state and 
decay channel. 

The point is that these statements should be true for both the resonant states and the 
negative states. Thus, the rvidtlis F R  at Elab 2 0 for the negative states are an expression 
for their nuclear structure in the Same manner as they characterize the nuclear structure 
in the case of the resonant states. This is the reason why we call the negative states with 
large i?R collective states. 



Chapter 7 

SUMMARY 

In this work, the inffuence of a particle decay threshold on the redistribution taking place 
in the nuclear system under the critical condition of high level density was investigated. 

It is numerically and analytically shown that the trapping effect investigated in the 
system far from threshold by Rotter and CO-workers also must work over the threshold 
for neutron scattering. Negative nuclear states, that would be resonances if the Q-value 
was smaller, can trap the resonances. It is also numerically shown, that the broad state 
is preferably formed in the low-energy part of an ensemble close to the elastic threshold. 
Therefore an ensemble with energies around the threshold and the 'broad' state lying in 
the negative part of the spectrum may exist (such a state is called collective). In this 
case, the states with positive energies, which could be investigated with neutron scattering 
e.xperiments, are all trapped. This could give a theoretical explanation for the results OE 
neutron scattering at energies close to the elastic threshold in heavy nuclei. 

Furthermore, the neutron scattering cross section for the case when the collectivestate 
has an energy only slightly below the elastic threshold was calculated. The tail of the 
collective state can be Seen directly as a difference between the direct part and the total 
cross section. 

The calculations up to now are made for one particle scattering on " 0  and 15N only, 
and high level density is simulated by giving the parameter aex a non-realistic high valiie. 
For heavy nuclei, the natural level density is much higher. Thus for being able to perform 
a realistic comparison between experimental data and theoretical calculations for ~ieutron 
scattering, calculations must be performed for heavy nuclei. 

Generally, it makes no sense to speak about the width of a state with negative energu. 
In order to find another interpretation of the imaginary part of tlie cornples eigenvalues 
of the effective hamiltonian (calculated at  positive energy of tlie system), the espansion 
coeffcients of the states coupled to tlie continuum versus tlie closed system states are 
investigated. It is shown that the structure of the broad state is siinilar to tlie structure 
of the decay channel. This is also true Eor the negative states. 



The coilective structure of the broad state is a result of the redistribution taking place 
at a critical value of the coupling to the continuum. The structure shows the important 
role which the environment of decay channels plays in this process. 
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