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Abstract

An expression for the evaporation rate of neutral atoms from a hot
liquid cluster is suggested. It combines Weisskopf’s statistial model for
the decay with a level density that is derived from the experimentally
known free energy of macroscopic droplets of the cluster material. For
the case of sodium clusters, a comparision with the rates based on the
level density of a system of osciliators shows that this frequently used
expression gives always much larger evaporation rates.

PACS numbers :36.40-+d

1 Introduction

The electronic shell structure of simple metal clusters has been discovered
in the abundance spectra after an evaporation cascade [1]. Though there
are studies of the evaporative ensemble [2], the quantitative relation beween
binding energies and the observed abundances ist not yet established. In
LASER induced evaporation experiments the cascade is better understood
and binding energies have been derived from the observed abundances [3, 4].
The analyses of the evaporation data are based on expressions for the rates
similar or equal to the one suggested by Engelking [3]. It combines Weis-
skopf’s rate expression [6] with Kassel’s level density estimate [7] for 3V — 6
oscillators, among which the energy is equipartitioned. Obviously, this level
density cannot be very accurate for clusters above the bulk melting temper-
ature. The ions move through the cluster instead of oscillating around fixed
positions in a molecular sceleton. This has been demonstrated by molecular
dynamis simulations [§]. In the present paper an expression is suggested that
is also based on Weisskopf’s rate, whereas the level density is derived from
the thermodynamic properties of the bulk liquid, which are experimentally
well known. The assumption entering the approach is that the appropriate
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scaling laws with respect to the number of atoms ¥ ( o ¥ for the volume
term and o N3 for the surface term ) hold down to very small clusters of
some ten atoms.

The rate constant is derived section 2, following the general scheme by
Brink and Stringari {10], but making a specific mode! for the iree energy. In
section 3 the rate constant is compared with the one based on Kassel's level
densities, considering Na clusters as an example. During the completion of
the manuscript the work of Hervieux and Gross {12} came to our attention,
who suggest a very similar approach. In section 3 the relation of their rate
constant with ours is discussed.

2 The droplet rate constant

2.1 General expression

We start from the principle of detailed balance [8], used by Weisskopf to
describe neutron evaporation from nuclei. It has been used in refs. [5, 10, 11]
in combination with different expressions for the level densities to derive
evaporation rates af atoms from clusters. The probability per unit time to
evaporate an atom with the kinetic energy ¢ from a cluster with the energy
F is [6]

mo w(E —¢g,N)
217 w(E,N)
Here, m is the mass of the emitted atom, g its spin degeneracy, o the cross
section of the inverse reaction of absorbing one atom and w(f, V) is the
level density of the cluster with the mass number N atoms and the energy
£. 1t 1s assumed that there is no barriere for the atom leaving the cluster, e.
g. we consider the evaporation of neutral atoms from neutral clusters. The
absorption cross section is taken to be equal to the geometric one

Wde =g dz (1)

o=, @)
i. e. the atoms sticks when it hits the cluster. Here, R is the cluster radius

- da
R=r N3 o= “3—*?3 (3)
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v the specific volume and r, the Wigner - Seitz radius. The total rate is
obtained by integration over all possible kinetic energies of the emitted atoms.

P dN  mR’ fE_E"(‘\'m_I) w(F -2, N)
~a T I w(E. N)
The ground state energy is denoted by E,(&V).

In order to derive the expression for the level density we start from the
Darwin - Fowler relation

1 y & 7
W(E,N) = — /G g5 E-F N, (5)

2ot

dz {4)

<

The contour is parallel to the imaginary 3 - axis to the right of all sigularities
of Z(#'). The free energy of the isolated cluster, F{J3, ¥}, is given by the
canonical partition function

. 1 BB
F{B,N) = ~Emz(ﬁ,m, Z(B,N) =y ePB (6)
The sum runs over all quantal states 7, NV of the cluster. Contact with thermo-
dynamics is made by evaluating the integral in saddle point approximation.
This method has been used in nuclear physics, where a review can be found
e. g. in the textbook {9], and i cluster physics [10]. The position of the

o
saddle point 7 is determined by the equation

d . . -
~5,5[;3(19””1’7(,5';1‘*’))], {7)

which defines the temperature T(E, N) == 1/5. The standard thermodynam-
ical potentials, as entropy

g ATV e a TJYOAT ]
S(T, N == -—aTF(]“\v) {8)

and average energy
E(T,NYy= F(I.N)+ TS(T,N) (93

appear as quantities derived from F(T, N} and the condition {7) for the
saddle point may be rewritten as the familiar implicit equation equating the
cluster energy with the average energy

E = E(T,N), (10}
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which determines the temperature. The integral is calculated expanding the
exponent of the integrant up to second order in 8 - 3’, where the coefficient
of the second order terms can be expressed in ferms of the heat capacity

d

C(T, N) = é—TE(T, N (11)

The level density becomes {10]

w(E, N} =

SEN). (12)

F

1
T(E, N)\/2xC(E, N)

In order to evaluate the expression one has to invert the eq. (10) to find
T(£, N) and inserting it into the egs. {8 and 11} one obtains C(E,N) and
S{E,N).

It is a good approximation [10] to expand S(E — g, N — 1) with respect
to the released kinetic energy ¢. Using 8/0ES(E,N — 1) =T(E, N — 1)

W(E -, N —1) mw(E,N — 1)es/TEN-1) (13)

one finds the familiar Maxwell distribution for the kinetic energy. Putting
this into eq. (1), one obtains the average kinetic energy released, & =
2T(E,N -~ 1). The following term in the exponent is Zz2/T(E, N — 1) =
g2 {T?C. Compared with the leading term it is reduced by £/TC ~ 1/C
and may safely be neglected for clusters with N > 10. Carrying out the
integral (4} one finds

dN mh? . . C({E,N) . ;
LR, - ¢ JUSRRE . &\! / E’ l\r e 1 Rk S S S(E,:\_I)MS(E,N)
Ve gp =9 T T WeEv-1° (14)

So far we have derived a general rate constant that is completely expressed
in terms of the free energy (T, N) of the cluster. In the following a model
for the free energy is specified.

2.2 The droplet free energy

We make now the assumption that microstructure only shows up in the
ground state energies £,{/V) of the clusters. The temperature dependence
of the energy is assumed to be the same as that of a macroscopic droplet of
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the liguid of the material the cluster is composed of. Then, the free energy

reads
Frp(T, Ny = Fip(T, N) + E{N). (15}

The thermal part of the free energy, F7p, which we call the liquid drop free
energy for simplicity, consists of a volume and a surface part

Fip = "N +4zlr(TValT) — r,(0)%a(0)] ¥ (16)

The specific free energy f~, the surface tension o and the Wigner - Seitz
radius 7, are assumed to be given by the experimental values at standard
pressure p, = lafm, as quoted in the tables (e. g. in {13, 14]). It is noted
thal the second term, which is usually called "surface energy™, is a free energy,
since the experiments to measure it are carried out at fixed temperature [15].
The expression assumes a size independent surface tension o and incompress-
ibility of the liquid {then, f* becomes pressure independent). It represents
the leading terms in a leptodermic expansion into powers of N~1/3, The next
term of order N*/® would take into account a number of effects, including the
finite compressibily and the size dependance of the surface tension (curvature
correction}. A systematic leptodermic expansion has been worked out in the
droplet model of Meyers and Swiatecki [?]. The Coulomb energy of charged
clusters may be incorporated into Z,(V).

Let us start with the volurne part. Usually, the tables quote the specific
heat ¢, as a polypomial in F'. For the liquid one may safely ingnore the
difference between ¢, and cy, since the volume work p,v, where v is the
specific volume of the liquid, is negligible compared with ¢. Using a third
order polominal, as in [14], the specific heat of the liquid is

C(T) = Ly -+ ClT + CQT2 (E‘F)
By integration one obtains the specific infernal energy

i 5 L . .
€*(T) = cgl + gclT“ -+ E’ngTd {ES)

Integrating ¢/T gives the specific entropy

-~ ’ j. 9 . N
S(T'} =g+ eplnTl 4+ T+ _—)‘C;zT‘ {igi
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The integration constant s is fixed by the tables [14] that quote absolute
values of 5. Finally, 7
(Y= e (T)~Ts(T) (20)
The surface term is defined by the the surface tension and the Wigner -
Seitz radius, which can be well approximated by linear expressions in 1.

a(l}) = ap — a1 T, ro(T) = rq + T (21)

The entropy, energy and heat capacity are obtained by means of the standard
relations (8,9,11),respectively,

Spp(T, N) = s(T)N + dxfenri(T) - 2ria T (TY N3, (22)

Erp(T,N) = Eip(T, N} + E{N) (23)
Eip(T,N)=e(T)N + 4ﬁ[a9(7‘f(T) - TS) - 'Zv'la(T)Ts(T)T]NwE' {(24)
Cro(T, N} = c(t)N + 8720y ry7s(T) — ric{THT N3 (25)

Since only the internal energy is T - dependent, one may use &£~ as the energy
variable instead of E. The relation (24) gives T(£*, N). The internal energy
of the cluster after emitting the atom is

E*Y{(N—=1)= E*(N) -z~ D(N), D(N)=L,(N~1)—E,(N), (26

which must be used in eq. (24) to calculate T(N —1, E*,2). Here appear the
separation energies D(N). This form is frequently used [3, 10, 11, 12]. We
will refer to the rate constant based on the expressions (15,16) for the free
energy as the droplet rate.

The separation energies D(V) are still not specified. They may either be
estimated by a suitable model or can be considered as free paramenters to
be determined from the experimental evaporation rates. A simple estimate
is based on the on the ligid drop energy at zero temperature

&

W
T

D(i\fr) = —fn — 3

2o NTHE (27)

where ey = e{T = 0) is the bulk separation energy at zero temperature that
is also acessible from the tables [14]. It does not contain the fluctuations that
are due to the electronic shell strucure.



The shell effects in the valence electron system also influence thermal
part F. This effect as well as the change of the surface area by deformation
of the cluster, can be studied by using the shell correction approach to F,
suggested by Frauendorf and Pashkevich [16]. There the free energy has the
form

F = Fip+6F (28)

where Firp is the total free epergy of the droplet (including the ground state
energy) and the shell correction &F describes the influeuce of the valence
electron shell structure on both the ground state energy and on F*. Since
the electron gas is degenenerated, the latter contribution is expected to be
smail. On the other hand, the rate constant depends on the difference be-
tween the entropies of two adjacent clusters and the local changes with &,
caused by shell structure, may be become nonnegligible. This question will
be investigated in a forthcoming paper.

3 Discussion

As an example, table 1 compares the droplet rate sodium with some other
rate expressions. The parameters for liquid sodium are are [13, l4]: ¢ =
4405, ¢, = —26.7eV "1, cp = 172.36V "2, a = 0.0142e VA%, oy = 0.073472 g =
2.0654, r; = 2.34AeV™1, eg = —1.13eV and s = 23.721 The table quotes the
rates for differnt mass numbers, assuming that the parent cluster has a ther-
mal energy corresponding to a temperature of 30mel’, which is typical for the
evaporative ensemnbles. For the separation energies the liquid drop expression
(27) is assumed. Shell structure is not considered.

The difference between Engelking’s [5] rate, which is used in the analysis
of the experimental evaporation rates [3. 4] and our droplet rate is the level
density. He uses the Debye expression for a system of 3V — 6 oscillators with
frequency w;, among which the energy is is equipartitioned.

elaN-ay 305

=— J1 — (20}
BN =6 L1 ke “

w(E,N)

The table quotes the rates obtained with his expression [5]. assuming that
the clusters have the same internal energy £* and separation energies [ as
as quoted. For the small clusters the droplet rate is about four orders of



magnitude smaller than Engelking's estimate, for the largest the difference is
about three orders of magnitude. The origin of the difference is the smaller
heat capacity, which is 3V —6 in the Kassel expression. For .V == 20, the heat
capacity is ' = 34 for the system of hamonic oscillators, whereas the the
droplet estimate gives 76. Most of the difference comes from the volume part.
The specific heat of sodium at 1" = 50meV is ¢ = 3.5 to be compared with 3
for the system of harmonic oscillators. In addition, the finite size corrections
1o ' have different sign. In the Kassel expression it is -6, whereas the the
surface part in Cpp is 6.4 for V = 20. Hence, higher temperatures are needed
to give to the system of harmonic oscillators the same internal energy as to
the droplet. This results in the strong enhancement of the evaporation rate.
For large clusters the finite size correction become less important and the
differnce between the rates decreases. However, it always remains large,
because of the differnt values of the specific heat. The larger specific beat
of the liquid is a consequence of the strong anharmonicities that occur when
the vibrational amplitudes become that large that the material melts.

The column Dy quotes the separation energies that have to be assumed in
order to make Engelking’s rate equal to the droplet rate. The separation en-
ergies obtained such are always larger than the droplet estimate. Hence, de-
riving separation energies form the experimental evaporation rates by means
of the droplet rate expression will result in smaller values than by means of
the frequently used expression by Engelking.

The droplet rate derived by Hervieux and Gross {12] differs from ours in
the definition of the entropy. They use the standard relation § = —3/dT F{(T',
{fixed volume), as given for example given in the texbook by Landan and
Lifschitz [15], which does not contain the thermal volune expansion. It is
obtained form our expression by setting the term r;, which deseribes the in-
crease of the Wigner - Seitz radius with temperature. equal to zero. Such a
definition is appropriate for a surface between gas and liguid in contact with
external forces and reservoirs. which is the typical macroscopic situation
{grandcanonical ensemble). In addition, the prexponential factors in the ex-
pression {12) for the level density do not appear. Our definition of the entropy
and the prexponential factors appear in a natural way when the cree? lov-
eldensity (5) is calculated in saddelpoint approximation. In an approximative
way, they way account for the fact that the ésolated free Hiying cluster must be
described by the microcanonical ensemble. Qur entropy S = —d/0T F{1. N}
{fixed N} contains an additional contribution from the thermal expansion of

-t
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the cluster, which has the opposite sign of the standard term that originates
from the T -dependence of the surface tension { o decreases with T but the
surface area increases with 7'). At given 7', the thermal energy £~ is larger
since it contains a contribution from the surface energy caused by the vol-
ume expansion, For NV = 20 and T = 30mel” one finds £~ = 4 04mel if
the volume expansion is taken into account and 3.88meV if not. Vice versa,
if the same thermal energies F* are considered, the temperatures without
the volume expansion are slightly higher (¢. f. tab.), what makes the evap-
oration rates larger for the latter case. However, the prexponential factor
in the level density is T(N, E)/T(N —~ 1, E)\/C(N, E)[C(Ny, E), which is
1.25 x 1.02 = 1.28 for N = 20 and T = 50meV. It mainly compensates
the the decrease of the rate due to the lower temperature, such that the
our droplet rate is only by a factor of 0.9 smaller than the one by Hervieux
and Gross. For large N the two expressions converge to each other. This
is limit of the gaskinetic rate expression, which has been discussed in refs.
[10, 11, 12].

The droplet rate taking into account the surface correction is always
smaller than the one by Brink and Stringari [10], who only consider the vol-
ume part of the thermal excitation {though the surface contribution to the
separation energies is taken into account). The surface part of the droplet
entropy (22} is positive for sodium. The second term due to the volume
expansion is smaller than the first one caused by the decrease of the surface
tension with temperature. Hence, there appears a negative contribution to
the exponent in the rate expression (14). For N = 20 and 19, the surface
entropy is 22.2 and 20.2 and for 100 and 99 it is 64.9 and 63.6, respectively.
The surface term decreases oc N_y3 as compared to the volume part.

The the total entropy differnce is rather constant = 27 { 26.8 for the decay
of N == 20 and 27.0 for N = 500), as given by the specific entropy. This has to
be compared with the entropy difference of the valence electrons. Considering
two spherical clusters at small temperature, where the mother has no and
the daughter one hole in the electron level with angular momentum I, the
electronic entropy difference is In{4{ 4+ 2), which is 2.1 for [ = 3 beeing
filled for N = 34. This 15 about the same value as the surface contribution.
Deformation effects will tend to decrease this number since they lift the
degeneracy. However, it seems to be possible that the surface contribution
and the contribution from the electronic shell structure to the entropy are
comparable, as the corresponding contributions to the separation energies.
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This question will be studied in a forthcoming paper. As mentioned above, it
is straight forward to incorporate the electronic shell structure into the rate
expression by using the shell correction approach to £, as suggested in ref.
[citefp.

4 Conclusion

Starting from the Weisskopf statistical decay model and the saddle point ap-
proximation to the Darwin - Fowler expression for the level density we have
derived the droplet rate for evaporation of neutral atom. It is completely
determined by the free energy of the isolated cluster. The free energy can
be calculated from the experimental thermodynamical properties of macro-
scopic droplets, if the validity of the scaling laws with respect to the mass
number is assumed to hold down to some tens of atoms. Applying the droplet
rate to the experimental evaporation rates allows to to derive "experimental
separation energies”, which are expected to be smaller than the one found
on the basis of Engelking’s rate. It would be interesting to reanalyse the
existing measurements in order to see whether the droplet rate leads to a
consistent picture and more accurate separation energies. It is not obviuos
at this point whether it is sufficient to consider the electronic shell structure
only for the separation energies. First estimates indicate that it may con-
tribute in favorate cases up to 10% to the entropy difference that appears in
the exponent of the decay rate. This number is comparable with the surface
contribution to the entropy difference.
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N £ o logl 1 loglp Ty D Dgp logl'y logl's Tug
20 4.04 50 5 52
19 3.09 564 40 940 61 0.94 141 5.69 6.11 41

30 9.99 50 69 52
49 9.00 605 46 9.25 64 0.99 L4 6.13 6.45 47
100 19.85 50 68 51
99 18.34 6.21 48 923 65 1.02 146 6.31 6.56 49
500 98.35 50 66 51
499 97.28 6.50 50 89.33 65 1.06 1.49 6.57 6.72 50
10°  196.15 50 66 ol
195.07 6.62 50 943 65 1.08 1.50 6.68 6.80 50

10*  1950.30 50 65 50

194919  7.10 50 9.883 65 1.11 1.52 V.15 7.20 50

Table 1: Comparison of different evaporation rates. Temperature and ther-
mal energy of mother and daughter cluster are added. The energies are given
in eV and the temperatures in meV. The decimal logarithm of the rates is
quoted, where the rates are in units s7'. The expression (14) is used to
calculate the droplet rate. The columns with subscript £ denote Engelk-
ing’s values [5] that base on the level density of 3N — 6 harmonic oscillators.
The column Dg quotes the separation energies that are neccessary to make
g =T, The columns with ths subscripts /f and B quote the rates obtained
from the droplet rate of Hervieux and Gross [12] and Brink and Stringari
[10]. The temperatures are equal for these two approaches. The same sepa-
ration energies as given by the zero temperature liquid drop expression (27)
are used.
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