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Abstract 

Axial incompressible, viscous flow is considered in an annular gap between two rigid 

cylinders. If the cylinders are displaced from their concentric positions in a certain 

manner, the displacement will cause reaction forces exerted by the fluid pressure. In 

this investigation the pressure fluctuations caused by the displacement of the 

structures are approximated by analytical means. Pressure fluctuations in phase with 

acceleration and velocity of the structure are not calculated here. Stationary flow is 

considered, because structural displacements are assumed to be small. 
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List of Symbols 

Outer cylinder. 

Inner cylinder. 

Spring constant relating to  the structural displacement qi. 

Force or torque relating to  the structural displacement qi. 

Jacket of the cylinders A, B, respectively. 

Length of the cylinders. 

Column matrix (8 X 1) of interpolation functions Ni. 

The i-th interpolation function of spatial variables in the matrix N. 
Mean value of the radii of the two cylinders. 

Radius of the outer cylinder. 

Radius of the inner cylinder. 

Reynolds number. 

Width of the gap  between the cylinders if both cylinders a r e  a t  

rest. 

Mean velocity of the basic stream, averaged over the cross- 

section of the annular gap. 

Reference velocity. 

z-Coordinate of the hinge of cylinder A, 2,s Ll2. 

z -Coordinate of the hinge of cylinder B, ZBs L / 2 .  

Constant numbers or lengths for a given system. 

Constant numbers or lengths for a given system. 

Coeffizient matrix (8x 1 ) in the Fourier expansion of 

t he  pressure field. 

Element i of the column matrix c . 
P 

Term of a sum of the coefficient s ~ .  This term is derived from a 

homogeneous solution of a certain differential equation. 



Term of a sum of the coefficient cpi. This term is derived from a 

particular solution of a certain differential equation. 

Coefficient matrices (8x 1)  in the Fourier expansions 

of the velocity components U,., uq, U,, respectively . 
The  ith elements in the column matrices c , c , c , respectively. 

r q i  

Unit vector in axial (z-)direction. 

G ravitational acceleration. 

S h a p e  function, relating to the structural displacement qi. 

Interpolation function, relating to the structural displacement qi. 

Distance from the hinge of a test pendulum to the centre of gravity 

of the test pendulum. 

Static pressure. 

Pressure averaged over the circumference a t  the top of the 

annular gap. 

Pressure a t  the bottom of the annular gap. 

Mass of the cylinder B. 

Mass of the cylinder B reduced by the displaced mass  of the fluid. 

Column matrix ( 8x  1) of the structural displacements of both 

cylinders. 

Column matrix (4x 1 ) of the structural displacements of 

cylinder A. 

Column matrix ( 4x 1) of the structural displacements of both 

cylinders. 

Element i of column matrix q. 

Radial coordinate of the laboratory-fixed cylindrical coordinates 

( T >  ( P ~ Z ) .  

Coefficient matrix (8x 1 ) in the Fourier expansion of 

the pressure field. 

Efement i of the column matrix s . 
P 

Coefficient matrices (8x 1 ) in the Fourier expansions 

of the velocity components ur, uq, L[-, respectively. - 

The  jlh elements in the column matrices s , s , s , respectively. 
" P Z  



Velocity field of the fluid. 

Axial fluid velocity component, averaged over the circumference 

of the gap. 

Parallel displacements of the cylinders A, B, respectively, in 

X-direction. See fig. 2. 

Parallel displacements of the cylinders A, B, respectively, in 

y-direction. See fig.2. 

Axial coordinate of the laboratory-fixed cylindrical coordinates 

( r ,  q , z ) .  

Undetermined functions, dependent on the radial coordinate E;. 

Moment of inertia of a rigid body. 

Moment of inertia caused by the fluid pressure. 

Undetermined real numbers. 

Undetermined functions, dependent on the radial coordinate 6 .  
Different damping coefficients, 

Axial coordinate of the coordinates ( E; , 4  , C ) . 
Radial coordinate, linear in 5. 
Dynamic, molecular viscosity of the fluid. 

Radial coordinate of the coordinates ( , 4 , ) . 
Density of the fluid. 

Circumferential coordinate of the coordinates ( , 4 , C 1. 
Circumferential coordinate of the laboratory-fixed coordinates 

( r ,  0 , ~ ) .  

Rotational displacements of the cylinders A, B, respectively, 

around the X-axis. 

Rotational displacements of tbe cylinders A, B, respectively, 

around the y-axis. 



Partial derivation with respect to r with cp and z being constant. 

Partial derivation with respect to cp with r and z being constant. 

Partial derivation with respect to z with r and cp being constant. 

Partial derivation with respect to E with 0 and C being constant. 

Partial derivation with respect to 4 with 5 and C being constant. 

Partial derivation with respect to C with E and @ being constant. 

Restriction of the function f on the domain with 6 5 RB or 0 , 

repectively. 



1 lntroduction 

Modelling the vibrations of a reactor pressure vessel and a core barrel, the forces of 

the fluid onto the solid structure have to be taken into account [I]. Grunwald and 

Altstadt [2,3] regard two rigid cylinders which are concentric at rest. The cylinders can 

perform arbitrary small motions except axial displacements and rotations. In between 

the cylinders an axial fluid stream is dlriven by a pressure difference from the top to the 

bottom of the annular gap. Acceleration and velocity of the cylindrical structures are 

causing reaction forces of the fluid. In [2,3] a pressure field is derived which describes 

the added mass and the added daimping effects. in this report a pressure field is 

derived which approximates the reaction force of the streaming fluid caused by the 

displacement of the structure. 

It is assumed that the displacements of the cylinders are small in comparison with the 

fluid filled gap between them. This assumption is required to linerarize the governing 

equations with repect to displacement, velocity and acceleration of the structure. 

Presuming these conditions, it suffices to consider displaced but fixed cylinders and 

stationary flow. 

A number of Papers on similar or related problems has been published in [4]. Other 

work is presented in [5]-[8]. 

In the second section of this report the general problem is stated shortly. In section 

three the geometry of the system is exploited in order to simplify the mathematical 

problem. In section four and in section five the problem is restricted: The outer cylinder 

is fixed at rest and the inner cylinder can principally move in one degree of freedom, 

but it is assumed that the inner cylinder is fixed at any (non-vanishing) constant 

displacement. Other displacements ican be treated by analogy with section four. A 

displacement of the structure in one special degree of freedom is causing a specific 

disturbance of the basic stream. These disturbances can be superimposed because 

they are very sm~all. The superposition of the pressure disturbances is carried out in 

section six. In section seven theuretical predictions following from the resuit are 

compared with experimental data. Some remarks concerning the influence of the 



boundary conditions are given at the end of this report. 

2 Presentation of the Problem 

In this investigation the Same system is considered as in the work of Grunwald and 

Altstadt [2, 31. The geometry of the system is shown in fig.1 The length of the 

cylinders is L. The outer cylinder is denoted by A, the inner one by B. At rest the two 

axes of the cylinders coincide with the z-axis. The external pressure gradient 

( p ,  - p,)lL ( -Zz) drives the basic stream Ü,. 

The eight degrees of freedom of the motion of the cylinders are shown in fig. 2. The 

positions of the cylinders are denoted by 
T T 

4' = [xA~~&$~d7@yA7xB,~B,$~B~@sB] = [qA?qB] 9 (I) 

with $, and qYA being the rotation angles of the axis of cylinder A in the )I-2-plane 

and the X-z -plane, respectively. X„ Y, and the constant Z, denote the coordinates of 

the fixed point of the rotations of cylinder A. In fig.2 Z, =ZR =LI2 . The degrees of 

freedom ~ ~ , y „ $ ~ ~ , $ ~ ~  of cylinder B have to be understood analogously. The sign of 

the angles follows the usual mathematical convention. 

The following properties of the system are presumed: 

The fluid is incompressible. 

The width S of the annular gap is small compared with any of the two radii RA, 

RB of the cylinders A, B. S :  =RA -RB. S « RB. 

The displacements of the mechanical structure are small in comparison with 

the gap width S .  

The products qlqj and qi il; are small enough to be neglected. 

At the outlet of the annular gap the fluid escapes into a large volume. 

The mean radius R :  = (R, +~,)/2 is small in comparison with the length L of the 

cylinders. R < L.  



Geometry of the System 

In order to investigate the added stiffness effect caused by the basic stream, both 

cylinders are fixed at a certain position. At least one ,of the cylinders is fixed out of rest 

position. Stationary flow is considered. This treatment of the problem will be sufficient 

if the products qiqj  and qiqj are small (P4). 

The governing Navier-Stokes equations and the conservation of mass equation are 

written in cylindrical coordinates (r,cp,z) with ü as the velocity field of the fluid and p 

as the static pressure. 



1 - 1 1 
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On the cylinder jackets J, and J, the fluid velocity must be Zero. 

[%,B 
= ö .  

At the inlet I ,  with = 0 and the outlet 0, - with z = L the pressure values 

averaged over the circumference are constant. 

At first the investigation is restricted to the case p ,  2 p, .  In this case the condition 
- 

[ P I , = ,  = P ,  (9) 

must be fulfilled in agreement with experimental results [9]. In Appendix C the case 

p ,  C p,, this is upward flow direction, is considered. 

The properties PI-P6 fall into two groups: Properties PI-4 enable the approximate 

analytical solution described in this report. Properties P5-6 are connected with the 

boundary conditions at the inlet and the outlet of the annular gap. P5 sets the 

boundary condition (9). Boundary condition (7) does not require a certain pressure field 

close to the inlet. As will be Seen later, property P6 ensures that the effect of this 

uncertainty is small. 



3 Conclusions from the Geometry of the System 

3.1 Approximations of the Governing Equations 

Laminar flow regime is presurned. In the turbulent flow regirne the argumentation is 

valid for mean velocity cornponents averaged in time. 

In the calculations of this report all terms being quadratic in the displacements qi are 

omitted because of propetty P3, which states that ( q i / S ) «  1  in the case that i refers to 

a degree of freedom with parallel translation and ( q i L I S )  « 1 in the case that i refers to 

a rotational degree of freedom. 

If both cylinders are fixed at rest position, the velocity components L L ,  and U ,  are 

vanishing. Therfore in a power series expansion of these velocity components with 

respect to the displacements, the lowest non-vanishing order can be the linear one. 
2 Hence in eqs. (2)-(4) all products U ,  U,.,,. or U ,  U,.,, or 14, or U ,  U,,, or U ,  U , , ,  or 

U ,  ur are at least quadratic in the displacements. , 

In eq.(2) the order of magnitude of the term U,,,.,. is ( u r l s 2 ) ,  the order of magnitude of 

the term ( i l r ) ~ , , ,  is ( u , I ( R S ) )  and ( l l r 2 ) u r =  ( u , l ~ * ) .  Therefore ( l / r ) u , , , .  and 

( l l r 2 ) u r  can be neglected against ur,,.,. because of P2, which states thatS«R. By 

analogy with this argumentation it is concluded that in the viscosity terms of eqs. (3)-(4) 

every term with a factor l l r  is negligible. In the continuity equation (5) the term urlr 

is negligible in comparison with ur,,.. 

In Summary eqs. (1 0)-(13) are treated instead of eqs. (2)-(5). 



3.2 Separation of the Pressure Field and the Velocity Field into 

Fourier Components 

The dependence of the pressure field and the fluid velocity field on the circumferential 

angle cp is expanded in a Fourier series. The uniqueness of these fields requires that 

the Fouier series only contains terms with a spatial frequency ( k12n)  with 

k~ {0 ,1 ,2 .  ... ) . Among these terms those with a frequency larger than (1127~) are 

omitted, because in linear approximation with respect to the displacements qi the 

motion of any cylinder only produces disturbances of period 27~.  This is a pure 

geometrical fact which is expressed in the q-dependence of the shape functions g, 

listed in appendix A. 

The component u7 averaged over the circumference is denoted by iZ. The 

corresponding components Ü r  and < are set Zero, because there is no external 

pressure gradient in radial or circumferential direction. On this condition it is concluded 

from the continuity equation (1 3) 
- 
u z > z  = 0 .  (1 4) 

In order to describe the boundaries of the deformed gap with constant radial 

coordinates, the following coordinate transformation is introduced: 

5 := r - gTMr,cp,z) , 
@ : = q ,  (1 5) 
c : = z ,  

with g as in eq.(l) and real functions Ni with 

4 = h,(r) g,(cp,s) , 
hi(r=RA) = 1 ,  hi(r=R,) = 0 for q i € q A ,  i = 1 . . 4 ,  

hi(r=RA) = 0, hi(r=R,) = 1 for q, E q ß  , i = 5 . . 8  , 

gi(q,z) = ( U ,  + a,z)  coscp + (bio + bi,z) sinq . 



The functions gi are the shape functions relating the radial positions of points on the 

cylinder jackets with the displacements qi in linear approximation. A list of the 

functions g, is given in appendix A. Up to now it is not necessary to determine the 

smooth functions hi in the interior of the annular gap. 

Any point on the jacket of the inner cylinder has the coordinate =RB and on the other 

hand any point on the jacket of the outer cylinder has the coordinate 5 =RA for every 

displacement q. 

and the Fourier expansion of the pressure reads 

The first component of the column matrix C is denoted by C,,, , as an example. 
P 

Throughout this report the following definitions are valid: 



4 Added Stiffness Retated to the Pendular Motion of the 

Inner Cylinder 

In this section the outer cylinder is fixed at rest, the inner cylinder is fixed at a position 

where only the pendular displacement $,,, is different from Zero. This situation 

corresponds to 

sT = ro,o,o,o,o,o,o,lily,i , + O 7 (22) 

and 

~ Eq. (23 ) means with respect to partial derivatives 

Inserting the ansatz (17) and (7 8) into the momentum equations (1 0) - (12) and into the 

continuity equation (1 3), one obtains the following separate systems of basic 

equations. 

Equation of the basic stream 

Momentum equation in axial direction: 

Average component: 



System I (Containing the unknown functions C„ , 5, , S„ and czs . ) 
Momentum equation in axial direction 

cos C$ - component: 

I (26) 
d z h ,  d u -  dh ,  d2Üz z 

(<-zB) - 2 - 2(<-zB) - -+ a , c z 8 + a ; c „  . 
d6"E; dE d t 2  

Momentum equation in radial direction: 

tos@ - component: 

Momentum equation in circumferential direction: 

sin@ - component: 

Continuity equation 

tos@ - component: 



System I1 (Containing the unknown functions 5, , s , C„ and s:, .) 

Momentum equation in axial direction: 

sin Q, - component: 

Momentum equation in radial direction: 

sin Q, - component: 

Momentum equation in circumferential direction: 

cosQ - component: 

Continuity equation: 

sin Q, - component: 

Only eq.(25) is of order Zero in The other equations are of order one in In 

any of the eqs.(26)-(33) it holds 5 = r and ai = „ , because deviations of order two 

in the displacements are neglected throughout this investigation. 

Sytem II is a homogeneous system in the unknown functions .Y[,„ sr,, C„ and s:, . 
With the boundary conditions (6), (7) and (9) system I1 is solved by 

Sz8 = C@ = 0 . (34) 

In order to gain an approximate solution of (26) - (29), the following calculation steps 



will be done. 

(9 
(i i) 

(iii) 

( W  

4.1 

The basic flow ;, will be calculated from eq. (25). 

The basic flow iz will be inserted into the continuity equation (29). Additional 

boundary conditions of the velocity component ur will be gained. It will be 

concluded frorn the boundary conditions, that ur can be approximated as a 
P 

function of 5 and 4.  
The - derivative of eq. (28) will be compared with eq. (26). The <-derivative of 

the right hand side of the continuity equation (29) will be substituted for the C -  
derivative of the Fourier coefficient s„. The resulting differential equation will be 

solved with respect to cz8.  

The E - derivative of eq. (28) will be compared with eq. (27). The <-derivative 

of the right hand side of the continuity equation (29) will'be substituted for the 5-  
derivative of the Fourier coefficient sp8. The coefficient C ,  and in turn the 

coefficients s„ and c , , ~  will be calculated. 

Calculation of the Basic Flow 

Eq. (25) is solved by 

The basic flow uZ is sirnilar to plane Poiseuille flow. The annular gap can be locally 

approximated by a plane gap because of S « R  (P2). As an abbreviation it is defined 

4.2 Continuity of Mass on the Cylinder Jackets 

Boundary conditions (6) require 
- 

[a, L%][.RD - ['C ' l z ] t = R R  = ( I .  



On the jacket of the inner cylinder the continuity equation (1 3) is reduced to 

by inserting eqs. (24) and (37). On the left hand side of the equation above the 

second term of the sum is of order two in $„ because U ,  does not contain any term of 

order Zero in iIS,. Hence this term of the sum is omitted. Taking into account eq.(35) 

and the abbreviation (36) one obtains 

On the outer cylinder the corresponding equation is 

['E crs](=RA = 0 . 

The boundary conditions (6), (40) and (41) of ~1~ do not depend on C. It is concluded 

that the dependence of ur On is weak and can be neglected. 

a, ur =- o . (42) 

The above equation can be used to eliminate Fourier coefficients of ur by applying the 

operator dc. 

4.3 Calculation of the Disturbance of the Axial Fluid Velocity 

Applying the operator dC to eq. (28), one obtains an expression for dC cp , .  This 

expression is set equal to that from eq. (26). The coefficient s„ is replaced by the right 

hand side of eq. (29). The resulting differential equation is 



dh,  d 2 i z  d2hS duz  
- p  2-- + 

- i 1 ( C  -2,) 
dS d dS2 dS 

A.particular solution of eq. (43) is 
purr - 

cz* - cZ8,0 ( 4 )  + CZ8J  (L0 

In eq.(43) the term 

' 2 2  - P E  a4accz8 = - P E ~ ~ ~ ( ~ : ~ ~ ~ ~ ~ I  

has  the order of magnitude p (R ' I s )  C f  cz, 1 , which is larger than 

(49) 

because of S«R (P2). Therefore the term - 2ped can  be neglected and 



hom 
5 8  = Y ,i:, ..P($) 

is a n  approximate homogeneous solution of eq. (43). I', and I', a re  undetermined - 
functions of 5 .  At first the further investigation is restricted to the particular solution, 

- 
czx - c,8" The homogeneous solution (50) will play an  important role only near the 
fringes c = 0 ,  < = L .  

In order to proceed with the investigation, it is not necessary to calculate the function 

Cz8,0' Insertion of eqs .  (44) and (45) into eq. (29) results in 
r 

and insertion of t he  above eq.(51) into eq ,  (28) provides 

4.4 Calculation of the Radial Fluid Velocity 

Applying the operator to eq. (28). one  obtains a n  expression for aicP8.  This 

expression is s e t  equal to that from eq. (27). The  coefficient sqs is replaced by s „ ,  as 

written in eq.  (51). T h e  resulting differential equation is 

d b  d 3  I d 2  + - + - - - -  } Crs 
dC4 f dc3 c2 dc2 c3 d4 i- 



Eq.(53) has to be solved taking into account the boundary conditions (6), (40) and 

(41). Approximate solutions were gained by inserting a polynornial 

C,.* = a0 + a1 q + a2q2 + ... with 

and unknown coefficents ao, a, , a, ,... into eqs. (6),(40), (4l), and (53) and solving the 

resulting linear equation system with respect to the coefficients a„al, ... . 

Here approximate solutions are presented for two ratios SIR . 

S Case of - = 0.01: 
R 

3 Case of - = 0.1: 
R 

C,., = UO . (0.474899 - 0.498806 "1 

The above solutions of eq. (53) can be inserted into eq. (52) and the coefficient cr' 
is obtained. Only the first term of the sum on the right hand side of eq. (52) is taken 

into account. The second term of the sum is one order of magnitude smaller because 

of S«R. For any ratio SIR s 0.15 the result is 



More exactly one calculates 

with 0 C 6 < 0.5 

and increasing 6 with increasing ratio SIR . Blut in view of the approximations made, 

the term 6 is not significant. In formula (57) small radial pressure gradients are 

omitted. 

4.5 Fitting the Pressure to the Boundary Conditions at the Outlet 

Now the homogenous solution (50) of differential equation (43) is added to the 

partic~ular solution (44). 

Then a homogeneous Part of sT8 has to balance eq. (29). 

Eq. (60) ist inserted into the momentum equation (28). 

purf horn 
= + 

- - cp8 parr + Q Ü .  ( - r l e x p ( 7 )  - +xp([)) 



d r ,  dr ,  
Ti, I?; stand for - - , respectively. 

df ' df 

Everywhere in the annular gap it is demanded that 

Then the added homogeneous part fl does not violate the differential equation (53) 

with the approximate solutions (55) and (56). 

Eq. (61) is considered in the region near C = L.  Terms with the factor exp(-</E) or 

with factor (C - L) are neglected here. From eq. (61) with boundary condition (4) it is 

concluded that 

- ü + P ( F; + c P ~  pur! . (63) 

The function I?, is set to Zero, because at the inlet an exact boundary condition is not 

imposed. 

r., - = 0 .  (64) 

Combined with eqs. (63) and (64), eq. (61) reads 

The second term of the sum on the right hand side of eq. (65) is omitted, because 

either the exponential factor or the factors linear or quadratic in (C -L) are srnall. With 

the Same argument fulfills the condition (62). The relation [ = R  is valid in the 

whole annular gap, hence the result is 



4.6 Calculation of the Added Stiffness Acting on the Penduium 

The result (66) and q = [0,0,0,0,0,0 ,0 ,1p~~] are inserted into the eq.(18). 

In order to include the added mass and the added damping effects, the terms which 

are linear in (d+YBldt) or linear in (d2$yBldt') in eq. (4.22) in [2] must be added to 

P&Tp - The pressure field p(z,cp,t) from eq. (4.22) in [2] is denoted by p, here. An 

approximation of the total transient pressure field is 

P (<~.z;(d'$~,ldt~)~(d*~,fdt>,~g,) 

The equation of motion of the pendulum is 

The notation in eq. (69) is 

O Moment of inertia of the pendufum 



mBg weight of the pendulurn reduced by the buoyancy. 

ls distance between the Center of gravity of cylinder B and the hinge, I, := L12 -2, 

with 2,s L12. 

6 darnping of the pendulurn caused by the hinge. 

lnserting the pressure field (68) into eq. (69) one obtains 

0, and 6,, 6, are the added inertia and darnping coefficients caused by 

a p , l a ( d z ~ y , l d t ~  and ap,la(d~&,ldt) , respectively. 0, > 0, 6, 0 and 6,>0 are 

given by eqs. (4.32) - (4.34) in [2]. C„ is the added stiffness caused by pdisp in eq. 

(67). It holds 

with 

Due to RB =R - S / 2  - R because of S«R (P2) the integral (72) provides 

In the case of a fluid with a density as small as the density of air, 0, and 6, can be 

ornitted in eqn. (70). Further the mass m, of the pendulum is approximately equal to 

rn;. Then, presurned the darnping ist not too large, Zhe eigenfrequency f of the 

pendulum is 



5 Investigation of the Stiffness Effect Related to the 

Parallel Displacement of the Inner Cylinder 

Here it is assumed that the outer cylinder is fixed at rest, the inner cylinder is fixed at 

a position where only the parallel displacement X, is different from Zero, i.e. 

sT = [0 ,~ ,~9~~x„~ ,O,OI ,  X, +lO . (75) 

Again the ansatz (17) - (18) is inserted into the momentum equations (10) - (12) and 

into the continuity equation (13). Eq. (25) and the formula of the basic stream, eq. (35), 

are not influenced by the dispiacements q. Therefore eqs. (25) and (35) are valid 

throughout this repoit. The equations in the unknown functions crj, s„, q„ cP5 , q5, 

s„, cZ5, and C[,, are listed in Appendix B and can be solved by analogy with section 4. 

The result is 

Therefore, 

and axial displacements do not cause an added stiffness describable in the frame of 

this approximation. 

6 Results 

Every structural degree of freedom qi can be treated like 4, in section 4. The results 

obtained for different isolated degrees of freedom can be superirnposed. This can be 



done because - at first - nonlinear interactions of the di~placementsq~ are negiected 

and - secondly - all calculations are linear in the qi. 

The superposition results in the pressure field 

@, -P,) T 
p ( t p 7 z ; d  = ( P I -  z )  + gT C costp + g 5 sinq 

L -P 

The force or the torque Fi acting on the i-th degree of freedom qi is obtained from 



7 Comparison with Experimental Data 

Grunwald et. al. [9] measured eigenfrequencies of a rigid cylinder performing pendular 

motions inside a cylindrical duct, See fig. 3. The pendular motion has one degree of 

freedom completely corresponding to the problem in section 4. In the duct air flows 

:ig. 3: Scheme of the test System. 

1 
from the top to the bottom. At the bottom of 

the annular gap near z = L  the air streamed 

into the atmosphere. 

These experiments were characterized by 

the following main Parameters: Moment of 

inertia of the pendulum with respect to the 

hinge O = 3.7.10~' kg m' ; mass of the 

pendulum m, = 0.44kg ; mean radius of 

the two cylinders R = 2.6. 10-' m ; gap 

width S = 2.5- m ; length of the 

pendulum L = 0.16 m ; distance between 

the hinge and the center of gravity of the 

pendulum 1, - L/2  ; Reynolds number 

range O s  Re s 9000. Here the Reynolds number Re is defined as 

with 



Fig. 4: Eigenfrequencies of a pendulum. 

Fig. 4 depicts the dependence of the pendulums eigenfrequency on the mean velocity 

U. Experimental data from reference [9] are compared with th~eoritical 

eigenfrequencies calculated according to eqs.(74) and (73). 

In the laminar flow regime the predicted eigenfrequencies of the pendulum agree very 

well with the experimental data. This statement is still valid for the turbulent flow 

regime with Reynolds numbers not too large. For large Reynolds numbers the added 

stiffness effect is underesbimated. The underestimate is due to the fact that laminar 

theory is applied. However in ref. [9] the experimental data can even be estirnated by 

using eq. (81) in the case of turbulent flow regime. 

8 The lnfluence of the Boundary Conditions at the lnlet 

and the Outlet 

The investigation [9] shows that the boundary condition (9) is well posed in the physical 

sense provided that at the end of the annular gap the fluid can escape into a (arge 

volume. On the &her hand reference [9] describes pressure measurements m ich  give 

hints that at the infet of the annular gap a boundary conditian p - coyis~ is not 

adequate to physical reality, If a boundary condition more restrictive than eq, i(7) was 



demanded, the pressure field (81) could be strongly disturbed from z =O downward to 

a depth with the magnitude of the mean radius R. According to the approximate 

homogenous solution (61) this disturbance would vanish in a distance of some 

multiples of R from the points with z = O .  
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Appendix A: List of the Shape Functions gi 

List of the functions g, ( c p , ~ )  in eq. (16): 

2, and Z, are the z - coordinates of the fixed points of the rotations , and $, 
respectively. In fig.2 the case Z, =ZB = L/2 is depicted. In reference [9] the experiments 

were performed with fixed cylinder A and 2, = 0 . 

Appendix B: List of Equations Related to the Parallel 

Displacement of the Inner Cylinder in X- 

Direction 

Here the equations are listed which belong to the problem in section 5. 

System III (Containing the unknown functions crj , sqj , cZj and C,,, ) 

Momentum equation in axial direction: 

tos@ - component: 



dh,  di< 

d f  df' 
, 25 

Momentum equation in radial direction: 

cos@ - component: 

Momentum equation in circumferential direction: 

sin@ - component: 
- 

C P ,  = P 5 uz  8, sq, - r 4 [ai s„ + ai s„]. 

Continuity equation: 

cos@ - component: 

Sv ,  = - 5 (8, C Z j  + cr5) . 

System IV (Containing the unknown functions C, , s„ , cz, and 5, .) 
Momentum equation in axial direction: 

sin@ - component: 

Momentum equation in radial direction 

sin@ - component: 

Momentum equation in circumferential direction: 

cosQ - component: 



- ' 1  
spj = - P 5 U z  a, C„ + 5 [ag C„ + a; C.pil . 

Continuity equation: 

sin@ - component: 

Appendix C: Negative Added Stiffness Caused by a Basic 

Stream Flowing in Upward Direction 

A situation is considered similar to that in section 4, 

q T = [o, 0,0, 0,0, O,O, qY,1 ; O„ + 0 , (94) 

but 

PI <P2 (95) 

is assumed. Boundary condition (4) is omitted and 

[PI,=, = P, (96) 

is required. The problem can be treated in the Same manner as it is done in section 4 

up to eq. (61). In this state of the investigation the functions I', (E), r,(t) - have to be 

chosen such that the boundary conditions (7), (8) and (96) are fulfilled. This can be 

done by complete analogy with subsection 4.5. However, in the case considered here, 

the function I?, is identically Set to Zero and T", is used to adapt the pressure field to 

the boundary condition (96). The result is 

In the more general case with displacements in eight degrees of freedom the result is 



Z) + 4~ c cosg + gT s sing p((~,z;&?) = (P, + --- 
L -P 4 
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