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Abstract 

With the airn of generating a certain feeling for the general dependericies of the rriultipli- 
cation factor km the first section provides some results for two classes of defornlations of the 
original fuel pins. The niain part examines UOz-structures of increasing disorder, beginning 
with the hexagonal close package of fuel spheres and ending up with stocliastic georuetries. 
Arnong these structures the worst case, i.e. the one with the highest km t u t  preserving me- 
chanical stability is identified. The composition and geonietric paranieter of this case is used 
to calculate the critical thickness of a slab and critical radius of a sphere. 
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1 Introduction 

Investigations of severe accidents in power rectors u-ill hardly produce data on the geomets; com- 
position and density distributions of fuel mixtures in such detail as demanded for criticality calcu- 
lations. In view of this ill-conditionedness of the task one niight consider the following objectives 
of a general coritribution to the problern of recriticality in of a severe accident sceriario: 

The generation of a certain feeling for the dependencies of the multiplication factor km 
on various Parameters of fuel debris. This feeling is not too well developed even among 
specialists. In order to test one7s ability orie rnay try to guess the signs of changes in km due 
to deformations of the pins dealt ~ i t h  in the following section. This Erst section is devoted 
rnainly to a didactic purpose. 

The search for the 'xorst case', i.e. the composition and structiire of arrarigements with 
maxirnum multiplication. The fuel geoinetry with niaximurn k, is a hexagonal close package 
of spheres with a certain radius, irnmersed in water. But this arrangement is rnechanically 
unstable. Furtherrnore, the collapsed hexagonal close package with touching spfieres is by no 
means optimal 154th respect to k. Thus mechanical stability is a necessary condition in the 
search for the worst case. The main part of the present paper deals 1%-ith the deterrnination of 
such a striicture. In view of the complesity of the task rigorous rnathematical derrionstratiori 
is not espected to be successful. Instead one adheres to heuristic reasonirig. 

Firially a worthwhile objective rnight be to develop and verify cdculational tools for dealing 
with systerns possibly ernergitig frorn severe accidents in order to have them ready on the 
shelf iri the case of such an event. Tlie present paper Inay be regarded as a srnall step in this 
direction, too. 

The present parameter stiidy pursues to some extent all of the enumerated aims. It niakes use 
of the Monte Carlo Neutron Transport Prograni hICNP elaborated by LA-TL ([I]), together with 
continuous neutrori data from tlie ENDF/B-V1 library. The therrnalizatiori of rieutrons is treated 
by means of the S(a, ß) module irnplemented iri tiie code. 

2 Pin Deformations 

The description of possible piri deforrnations is limited by the pool of cell boundaries available 
in MCNP. These are: 1) Planes, 2) Surfaces of second order such as cylinders, splieres, cones, 
ellipsoides and hyperboloides, 3) One kind of surfaces of fourth order, tliat is to say toroids. 

The Babcock and Wilcox UOz benchrnark experiment ([2]) serves as a starting point in this section. 
It represents an infinite quadratie lattice with a pitch of 1.6256cm contairiing cylindrical U@ fuei 
elements with 2.49% enrichment in z35U and 0.51cm radius. The systeni is moderated by H20 
with an addition of 220ppm 'OB. By void substitutiori in the Center of a finite mock-up with the 
cited properties it has been dernonstrated experimentally, that the corresponding irifiiiite systelrr 
exhibits k, = 1. MCNP reproduces this t d u e  within the error limits. 

In the following two subsections the pins will be subjected to two kinds of deforrriations. Xn d l  cases 
the volumes of moderater and U 0 2  are conserved, and ncitiier edges rior eortiers of tfia dcforirittd 
surfaces are tolerated. 

The surface gain X due to the deforrnation serves as one of the deforrriatiori paraineters. 

2.1 Toroidal Deforrnations 

This kind of deforrriatiori clianges the cyliridrical pin to a body sirnilar to n high mltage iricuiator 
(see cross-section through the axis in 6g.l). T l e  outer bourrdary consists of tori with equal snialler 
radii, u-hich cari still be Iia~idied by XICXP. Ttie trarisitions frotit iriner to outer tori ure stiioath 
ories. Thus there are two pararneters of thr! deforrnatiori transforinatiou: Siirfact? gitiri t ;itid torus 
small radius T. All tIie pins iri the Iactice are dcforriied in tlie samt. way, witliom sliifts alotig t k  
axis. 





Figu?e 2: Results of k, calculations (vertical axis). The horizontal axis represeiits x, the surface 
gain by toroidal deformation. The parameter of the family of tun-es is the srnsller radius of tori r ,  
i.e. the radius of curvature of the deformed surfsce of the piii. Ttie piii radius rO serves as a unit 
of length. 

The results of km calculations after toroidal deforrnations are shown in fig.2 iii dependence ori the 
surface gain x with the radius of tori as a parameter of tlie family of curves. Generally, tfie curves 
terminate when neighbouring pins begiii to toudi. 

The maximum reactivity increase arnouiits to about 3.5%. 

One observes that a roughness with a small radius of curvature does not corisiderably cliange k, 
even if it strongly increases the surface (lowest curve in fig.2). 

2.2 Flute Deformations 

This kind of deformations leads to bodies similar to charinelled greek colurnris (see cross-section 
perpendicular to axis in fig.3 ). The boundary corisists of cylinders with equal radii and smooth 
transitions. There are again two parameters of the transformation: Surface gain a: and periodicity 
n (number of flutes around the circumference). The cylinders radii depend on n and 9. They are 
falling monotonically with n or X rising. Al1 the pins in the lattice are distorted in the Same W, 
without rotations around the axis. 

The results of k, calculations after flute deformations are shovin in fig.4 in deperidence On the 
surface gain X with the periodicity n as a curves pararneter. Generally the curves terrninate when 
the hills of neighbouring pins begin to touch. 

It7s amazing, but reactivity change is negative with this ki~id of distortioxi! 

There is no monotonic dependerice on the periodicity, even arid odd n befiaving differently. is 
an indication of the interaction of neighbouring piiis. With everi n ttie fiills always m ~ t  the hills 
of their neighbours, while with odd n this is not true. 

Again a small scale roughness (sinall r -, big 72) fms a negligible infiut?nce 0x1 km wen if tlre 
surface gairi is considerable. 

The above observations suggest tlie following heuristic conclusions: 

Deformatioris approaching tiie geotnetry of the at~soluteiy optirnd casc (ltexagoiid ~10se packrigc 
of spheres with a certairi lattice constant m d  spliere radius, see below) l e d  to positive reactiv- 
ity changes. Indeed, if ttie toroidal deformations are a~riglified rnort? anti rriore. tfiey lead W a 
corifiguratioi~ sitriiiar to chains of spfiercs (see the riglitrriost p x t  in fig. 1). 
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Figure 3: Flute shape pin distortions with 3 fliites (left) arid 4 flutes (right). 

Deformations leading further away from the optimal case induce negative reactivity changes. In- 
deed, if the flutes are deepened more and more, the resulting configuration is rather similar to a 
bundle of smaller cylinders an the place of the original pin. 

An increase of the surface due to small scale roughess (characteristic radius « sphere radius in 
the cited optimal case) has negligible consequences in k. 

3 Fuel-Water Structures far away from the Normal State 

In the following the condition of the Same U/HzO volume ratio as in the Babcock-Wilcox exper- 
iment will be dropped. The enrichrnent of 2.5% arrd the slight Boron content of 220ppm will be 
maintained. 

3.1 Hexagonal Close Packing 

Accordirig to the textbooks the fuet arrarigement with the absolutely biggest k, for a given ert- 
richrnent is the hexagonal close packirig of equal fuel sptieres. Irideed, rio cornplete demonstratiori 
of this statement is known to the author. 

Fig.5 dernonstrates the results for our case. Tlie rne~hariically stable case of touching spheres is far 
from beirig optimal. 



Figure 4: Results of k, calculatioris (vertical axis). Tlie horizontal axis represents X, the surface 
gain by flute deformation. The pararneter of the farriily of curws is the periodicity, i.e. the number 
of flutes or hills arourid the circurnfererice of the piri. 

3.2 Heaps of Fuel Spheres 

By means of a special code the MCNP input for a heap of touching fuel splieres without any 
lattice order, contairied within a cubic box provided 11-ith reflectirig walls, was gcrierated. Due to 
limitations of tlie fieid dirnerisions in MCNP a total of less tliari 4000 spheres had to be used arid 
the reflecting box had to be subdivided into srnaller cubic cells. Of Course, the box witli reflectirig 
wdls does not exactly rnodel aii infinite heap. But by varying the dimeiisioiis of the box it codd 
I J ~  showii, that the resulting error is negligible. The Same comment applies to ttie otlier structures 
to be presented in tlie following. 

The results are depicted iri fig.6. 

3.3 Stochastic Geometries of Overlapping Spheres 

Fuel i n  Spheres, Moderator in  Intermediate Space 

By means of yet another special code the MCNP input for a structure of interpenetrating spheres, 
randomly distributed within a cubic box with reflecting walls, has been generated. 

An important question concerns the threshold for tlie U / H 2 0  volume ratio, above urIiich there may 
exist mechanically stable structures within the frame of the indicated rnodel. Within the model 
of touching spheres, the orily stable configuration exhibits a U/HaO ratio of 0.83. If orie wants 
to increase this ratio, the spheres were forced to interpenetrate. Tlierefore within the model of 
overlapping spheres we regard U / H 2 0  ratios below 0.83 as mecha~ically impossible. This postulate 
is strorigly supported by regarding the corresponding picttires generated by the MCNP visualization 
cade SABRINA. 
The results for tlie geometry of overlappirig fuel spheres are shown in fig.7. 

f i e l  in Intermediate Space, Moderator in Sphcres 

Oviously, the abovc geometry can be inversed by putting the fuel into the intermediate space and 
the moderater into the splieres, The corresponding results are contairied in fig.8 



Figure 5: Results of k ,  calculatioris (1-ertical axis) for a lattice of fiiel splieres iri tiexagoiial close 
package, surroiinded by rnoderator. Tlie horizorital axis represerits tlie raclius of sydieres r. The pa- 
rameter R ckiaracterizes the property of ttie httice (sphere radius for tlie casc of touctiing splieres). 
Ttie lower right ciirve represerits the case of toiichirig sptieres, the orily corifiguratiori exhihitirig 
rneclianica1 stability. The curve sliowirig ttie absolute rriaxiiriurri of /c, ( R = l . l  O*r) corresporids to 
a volunie ratio of U / H 2 0  = 1.254. 

Figurc 6: ResuIts of kef f  caicuIatioris (vertical axis) for a heap of fiiel sptieres perietrated by 
moderater (upper curve] azid tlie inverse case of closely touchiiig rnoderator bubbles and fuel 
iri betweri (Iowr curve). In bot11 cases tlie horizontal axis represents tlie radius of spheres r. 
Tfie uotitrne ratio of tl/H20= 0.825 iu ttte direct case. 



Figure 7: Results of k e f f  calculations (vertical axis) for a structure of overlappirig fiiel spheres 
arrariged stodiasticülly in space, perietrated by rrioderütor. Tlie horizorital axis represerits tiie 
radius of spheres r. Parameter of the farriily of curws is the volurrie ratio of U/&C). 

Figure 8: Results of keff calcuIations (wrtical asis) for a structttrt? of nvcrlapping spiierica'l mod- 
erator bubbles arranged stochastically in space tsith fuel fillirig ttrc resultitig ga~js. Tlie liotizontd 
axis represents the radius of bubbles r. Pararnetcr of thc fariily af curvcs is ttit? trUQ d.oiume t.?tk 
I;/H?O. 



A Simple Chord Length Model 

Up to now- the results for stochastic direct and in%-erse geometries are not coniparable, because in 
the first case the independent parameter is the radius of the fuel spheres, in the seco~id case the 
radius of the moderator bubbles. Both Parameters are of the diinension of a lerigth, but they lack 
 an^- general significance, being related to specific models. 

A well proverl approsimatiori in reactor theory is the so called form independe~it approximation 
using the notion of the chord length. The definition of the uranium chord length Sbr is: 

where VLr, Ou are volume and surface area of the fi~el. 

Thus the chord length depends esclusively on the fuel volurne arid the 'inner surface area'. For tliis 
reason it is a much more general parameter than e-g. the sphere radius. 

We now try to derive expressions for the U chord lerigtli in the direct arid inverse case of our 
rnodel of overlapping spheres in stochastic geometry. TO this end fuel volurne ancl surface nrea nre 
understood as fimctions of the number n of spheres placed iiiside tlie (large) total volurrie \iot. 
It is easy to see, that the volurne T/v obeys the followirig differential ecluatioii: 

where TU is our foriner radius of fuel balls. Usi~ig tlie followirig riotatioris for dii~iciisionless cluaii- 
tities: 

we get: 

Using the i~iitial conditiori X = uo at 71 = 1 the solution becornes: 

a result to be expected. 

Slightly more tricky is the deri~ation of a dierential equation for the surface Ou, see fig.9, where 
the addition of one more sphere is depicted and where in this rattier crude description the boundary 
U/H20 is represented by a plane. 

The wanted diff. equ. for tlie surface area Ou then becomes: 

The first terni coricerns tfie case, if tfie new sphere ( r h  = 1) m a adiole fits irito the space not 
occupied by fuel. Ttie second terrn coricerns the case, if ttie spliere crosses ttie fuel/~noderator 
bouridary. In this case die surface increase is AO(z) = cap - circle cut by sspliere on bouridary: 

n o ( ~ )  =  SB^^^(^^ - 2) - T;(;:, - 2) = ~ i i ( ~ ~  - z)' (7) 

10 



Figure 9: Derivation of a diff. equ. for the surface area Ou 

With the notatiori y = OLr/4xT$ after iritegrating we get: 

With the iriitial coridition y(1) = 1 due to vo < 1 the solutiori is: 

The chord length expressed in the dimensionless quantities X, 7~ und vo reads: 

Replacing n in equ.(9) by nieans of equ.(5) with X and substituting the obtained expression for .>J 

in equ.(lO) the result is: 

Similarly, in inverse geometry: 

Both these forxnulac for the cliord 1erigt;lis show tlie exqected beh:~ioiir for X + 0 a ~ i d  1: -+ 1. ? " h ~  
for X + 0 Sv + 4r(1/3 , tlie diord length for isolated sytlieres. Likewise for X -+ 1 Sr; -+ X.  
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Figure 10: Results of k, cdculatioris (~ertical asis) in deperiderice oii tiie tiiel cliord lcrigtti Su. 
Tlie co~itinuous lines represeiit results for structures of overlappirig fuel spliercs. Tlic poirits witli 
triangles axid errorbars refer to a hcap of touchiiig fucl sphcrcs (W/lI~0=0.8:3). Tlie otlier poirits 
with errorbars refer to tlie inverse geo~rietry of ovcrlappirig rriocleriitor spticrcs (U/H20= 1.0, 1.25 
and 1.50). 

T h  Worst Case for UO- - pure HiO Mixtures 

In tlie following we shall drop the boration of the rnoderator arid will use pure EI-0 instcarl. 
Furtherrriore, besides the enrichrnent of 2.5% values of 3.0 arid 3.5% will be corisidered. Ttie aiiri will 
be to deterrnirie the worst case. Fig.11 presents the results obtained with the ~rioclel of overlappirig 
fuel spheres. In coritrast to the case of a slightly borated irioderator, here the optiiriuxri is placed 
clearly outside tlie range of U/H20 volu~ne ratios securi~ig rneclrianical stability ( 2 0.83 , sec 
discussion above). 

In the case of slightly borated moderator s h o ~ i  above (see fig.7 or 10), the rnaxirnurn i ~ i  k ,  
occurred a t  U/HzO = 1.25, obviously u-ithin the region of rneclianical stability. But with pure 
H20  the theoretical maximum ist located a t  U/H20 = 0.45, a valiie clearly causing ~nechanical 
instability. Therefore we take as the U/HaO volume ratio in the worst case the value 0.83, realized 
for a heap of touching spheres. By observing cross-sectioris of arrangernents of overlapping spheres 
generated as BICKP iriput using the SABRINA visualization prograrn oiie can get a feeling, tliat 
stability is probably lost already above the threshold of 0.83. Eurtherrnore the iiicrease in ka by 
reducirig U/H20 froin the adopted 0.83 to the true optimal bitt unstable 0.45 is not too irnportant 
(frorn 1.33 to  1.35). 

Up to now we have used stochastic distributions in space but fixed radii of tlie spheres. Likewise 
we have done caiculations with radii distributed around a rrieari F witli a certüiri dispersion a,. 111 
df cases results for k have been beIow tliose witli r fixed a t  T. Tliis fact is easily understaiidable 
due to the corwex shape of tiie dependence of k, 0x1 r (esisterice of a rriaxirnurn). In tkiis respect 
toe, the 'warst cwe' is really worst. 

Thus n-e retairi for furthcr use as the warst case the rnodcl of omrlappirig spheres with spherc 
radius fixelf a t  0.Sicrrt ( or chord lerigtfi = 4*(fuel voturrie)/(iririer fitel surface)= 3.20crn). These 
stnictrtre pnrarrieters do not ctiarige if ttie enrichrnerit is raisecl fro~ri 2.5 up to 3.5% 235U. With the 
sarnc results xve coriId irse tfie zrtodet of touclii~ig spheres with ideritical chord lengtli arid volu~rie 
ratio. 
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Figure 11: Results of km calculatioris (vertical axis) for 2.5% eririchnerit in '"L in dependence 0x1 

the fuel chord lengtli Su for U02 - pure H - 0  niixtures in ttie moclel of over1ayq)iiig ftid spiieres. 
Parameter of the fa~nily oF curves is the U/&O volurne ratio. 

4 Critical Slabs and Spheres in the Worst Case 

A box with the worst structure defined above tias been repeatecl iri a threedirrierisiorini lattice. This 
lattice lias been used to fill ari iiifinite slab or a spliere arid to calcula-te tlieir kef liy rneaiis of 
MCNP. Again tlie results are inserisitive to srriall changes of the box dirriexisioiis. The results at 
tliree values of the enrich~nent in 23% arid iri tlie presence or nbsence of an irifiliite umer reflector 
are contained in the following table. 

Table 1: Results of criticality calculations for an infinite shl, arid a, splierc for thrj worct case 
(structure with fuel chord lerigth 3.20 crri und fuel/rnoderator volutne ratio 0.53). Tlie trii~ses refer 
to U02 with the giveri eririch~nerit. 

3.5 
26.5 
16.5 

2210 
13iOj  
28.0 
23.0 
766 
424 

% 255U 2.5 
29.8 
19.D 

2480 
1660 
31.3 
26.1 
1063 
620 

slab 
dkrit 

mkrit [kg'm21 

sphere 
'"'" Irnl 

L 
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3.0 
27.8 
17.6 

2310 
1460 
29.2 
24.3 
868 
500 

no reflector 
with reflector 

no reflector 
with reflector 

noreflector 
with reflector 

no reflector 
with reflector 



5 Conclusion 

The preserit paper tries to create a certain intuitive feeling for the dependencies of the multiplicatiori 
factor k, of U02 - H20 mixtures. 

Corriposition and structure ofthe corium in the 'worst case' have been proposed and rriade plausible. 

The critical siirface derisity of an infinite slab arid tk~e critical mass of a sphere of GO- - H z 0  
~nistures for the worst case ~ 5 t h  respect to their composition und structure have been evaluatecl. 

MCSP appears to be a proper tool for calculating an)- niacroarrangeme~it of a great number of 
small spheres modelling a stochastic structure. 
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