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Abstract

With the aim of generating a certain feeling for the general dependencies of the multipli-
cation factor koo the first section provides some results for two classes of deformations of the
original fuel pins. The main part examines UO»-structures of increasing disorder, beginning
with the hexagonal close package of fuel spheres and ending up with stochastic geometries.
Among these structures the worst case, i.e. the one with the highest koo but preserving me-
chanical stability is identified. The composition and geometric parameter of this case is used
to calculate the critical thickness of a slab and critical radius of a sphere.
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1 Introduction

Investigations of severe accidents in power rectors will hardly produce data on the geometry, com-
position and density distributions of fuel mixtures in such detail as demanded for criticality calcu-
lations. In view of this ill-conditionedness of the task one might consider the following objectives
of a general contribution to the problem of recriticality in of a severe accident scenario:

e The generation of a certain feeling for the dependencies of the multiplication factor k.
on various parameters of fuel debris. This feeling is not too well developed even among
specialists. In order to test one’s ability one may try to guess the signs of changes in ko due
to deformations of the pins dealt with in the following section. This first section is devoted
mainly to a didactic purpose.

e The search for the ‘worst case’, i.e. the composition and structure of arrangements with
maximum multiplication. The fuel geometry with maximun k., is a hexagonal close package
of spheres with a certain radius, immersed in water. But this arrangement is mechanically
unstable. Furthermore, the collapsed hexagonal close package with touching spheres is by no
means optimal with respect to k. Thus mechanical stability is a necessary condition in the
search for the worst case. The main part of the present paper deals with the determination of
such a structure. In view of the complexity of the task rigorous mathematical demonstration
is not expected to be successful. Instead one adheres to heuristic reasoning.

e Finally a worthwhile objective might be to develop and verify calculational tools for dealing
with systems possibly emerging from severe accidents in order to have them ready on the
shelf in the case of such an event. The present paper may be regarded as a small step in this
direction, too.

The present parameter study pursues to some extent all of the enumerated aims. It makes use
of the Monte Carlo Neutron Transport Program MCNP elaborated by LANL ([1]), together with
continuous neutron data from the ENDF/B-VI library. The thermalization of neutrons is treated
by means of the S(«, ) module implemented in the code.

2 Pin Deformations

The description of possible pin deformations is limited by the pool of cell boundaries available
in MCNP. These are: 1) Planes, 2) Surfaces of second order such as cylinders, spheres, cones,
ellipsoides and hyperboloides, 3) One kind of surfaces of fourth order, that is to say toroids.

The Babcock and Wilcox UO» benchmark experiment ([2]) serves as a starting point in this section,
It represents an infinite quadratic lattice with a pitch of 1.6256cm containing cylindrical UO; fuel
elements with 2.49% enrichment in ?3U and 0.51cm radius. The system is moderated by HyO
with an addition of 220ppm '°B. By void substitution in the center of a finite mock-up with the
cited properties it has been demonstrated experimentally, that the corresponding infinite system
exhibits ko, = 1. MCNP reproduces this value within the error limits.

In the following two subsections the pins will be subjected to two kinds of deformations. in all cases
the volumes of moderator and UO» are conserved, and neither edges nor corners of the deformed
surfaces are tolerated.

The surface gain = due to the deformation serves as one of the deformation parameters,

2.1 Toroidal Deformations

This kind of deformation changes the cylindrical pin to a body similar to a high voltage insulator
(see cross-section through the axis in fig.1), The outer boundary consists of tori with equal smaller
radii, which can still be handled by MCNP. The transitious from inner to outer tori are smooth
ones. Thus there are two parameters of the deformation transformation: Surface gain = and torus
small radius r. All the pins in the lattice are deformed in the same way, without shifts aloug the
axis.
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Figure 2: Results of k,, calculations (vertical axis). The horizontal axis represents x, the surface
gain by toroidal deformation. The parameter of the family of curves is the smaller radius of tori r,
i.e. the radius of curvature of the deformed surface of the pin. The pin radius 10 serves as a unit
of length.

The results of ko calculations after toroidal deformations are shown in fig.2 in dependence on the
surface gain x with the radius of tori as a parameter of the family of curves. Generally, the curves
terminate when neighbouring pins begin to touch.

The maximum reactivity increase amounts to about 3.5%.

One observes that a roughness with a small radius of curvature does not considerably change koo
even if it strongly increases the surface (lowest curve in fig.2).

2.2 Flute Deformations

This kind of deformations leads to bodies similar to channelled greek columns (see cross-section
perpendicular to axis in fig.3 ). The boundary consists of cylinders with equal radii and smooth
transitions. There are again two parameters of the transformation: Surface gain z and periodicity
n (number of flutes around the circumference). The cylinders radii depend on n and . They are
falling monotonically with n or z rising. All the pins in the lattice are distorted in the same way,
without rotations around the axis.

The results of ke calculations after flute deformations are shown in fig.4 in dependence on the
surface gain x with the periodicity n as a curves parameter. Generally the curves terminate when
the hills of neighbouring pins begin to touch.

It’s amazing, but reactivity change is negative with this kind of distortion!

There is no monotonic dependence on the periodicity, even and odd n behaving differently. This is
an indication of the interaction of neighbouring pins. With even n the hills always meet the hills
of their neighbours, while with odd n this is not true.

Again a small scale roughness (small » — big n) has a negligible influence on ks, even if the
surface gain is considerable.

The above observations suggest the following heuristic conclusions:

Deformations approaching the geometry of the absolutely optimal case (hexagonal close package
of spheres with a certain lattice constant and sphere radius, see below) lead to positive reactiv-
ity changes. Indeed, if the toroidal deformations are amplified more and more, they lead to a
configuration simnilar to chains of spheres (see the rightimost part in fig.1).

N
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Figure 3: Flute shape pin distortions with 3 flutes (left) and 4 flutes (right).

Deformations leading further away from the optimal case induce negative reactivity changes. In-
deed, if the flutes are deepened more and more, the resulting configuration is rather similar to a
bundle of smaller cylinders an the place of the original pin.

An increase of the surface due to small scale roughness (characteristic radius <« sphere radius in
the cited optimal case) has negligible consequences in &.

3 Fuel-Water Structures far away from the Normal State

In the following the condition of the same U/H20 volume ratio as in the Babcock-Wilcox exper-
iment will be dropped. The enrichment of 2.5% and the slight Boron content of 220ppm will be
maintained.

3.1 Hexagonal Close Packing

According to the textbooks the fuel arrangement with the absolutely biggest ko for a given en-
richment is the hexagonal close packing of equal fuel spheres. Indeed, no complete demonstration
of this statement is known to the author.

Fig.5 demonstrates the results for our case. The mechanically stable case of touching spheres is far
from being optimal.
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Figure 4: Results of ke, calculations (vertical axis). The horizoutal axis represents x, the surface
gain by flute deformation. The parameter of the family of curves is the periodicity, i.e. the number
of flutes or hills around the circuinference of the pin.

3.2 Heaps of Fuel Spheres

By means of a special code the MCNP input for a heap of touching fuel spheres without any
lattice order, contained within a cubic box provided with reflecting walls, was generated. Due to
limitations of the field dimensions in MCNP a total of less than 4000 spheres had to be used and
the reflecting box had to be subdivided into smaller cubic cells. Of course, the box with reflecting
walls does not exactly model an infinite heap. But by varying the dimensions of the box it could
be shown, that the resulting error is negligible. The same comment applies to the other structures
to be presented in the following.

The results are depicted in fig.6.

3.3 Stochastic Geometries of Overlapping Spheres
Fuel in Spheres, Moderator in Intermediate Space

By means of yet another special code the MCNP input for a structure of interpenetrating spheres,
randomly distributed within a cubic box with reflecting walls, has been generated.

An important question concerns the threshold for the U/H,0 volume ratio, above which there may
exist mechanically stable structures within the frame of the indicated model. Within the model
of touching spheres, the only stable configuration exhibits a U/H20 ratio of 0.83. If one wants
to increase this ratio, the spheres were forced to interpenetrate. Therefore within the model of
overlapping spheres we regard U/H,O ratios below 0.83 as mechanically impossible. This postulate
is strongly supported by regarding the corresponding pictures generated by the MCNP visualization
code SABRINA,

The results for the geometry of overlapping fuel spheres are shown in fig.7.

Fuel in Intermediate Space, Moderator in Spheres

Oviously, the above geometry can be inversed by putting the fuel into the intermediate space and
the moderator into the spheres. The corresponding results are contained in fig.8



T
R=1.250* ro—i
R=1.180"r r+—i
R=1.125% ra—
1.12 = B=1.500"r. #2¢. |
s§.{; R=1.075" o
/ '\\E . Rer %
1.1 -
1.08 %
-
1.06 N : E
1.04 =
2
0.5 1 15 2 2.5 3 rfem]

Figure 5: Results of ko calculations (vertical axis) for a lattice of fuel spheres in hexagonal close
package, surrounded by moderator. The horizontal axis represents the radius of spheres r. The pa-
rameter R characterizes the property of the lattice (sphere radius for the case of touching spheres).
The lower right curve represents the case of touching spheres, the only configuration exhibiting
mechanical stability. The curve showing the absolute maximum of ko, (R=1.1 0%*r) corresponds to
a volume ratio of U/H.O = 1.254.
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Figure 6: Results of k.zy calculations (vertical axis) for a heap of fuel spheres penetrated by
moderator (upper curve) and the inverse case of closely touching moderator bubbles and fuel
in between (lower curvej. In both cases the horizoutal axis represents the radius of spheres r.
The volume ratio of U/H.O= 0.828 in the direct case.
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Figure 7: Results of k.s; calculations (vertical axis) for a structure of overlapping fuel spheres
arranged stochastically in space, penetrated by moderator. The horizontal axis represents the
radius of spheres r. Parameter of the family of curves is the volume ratio of U/H»0.
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Figure 8: Results of k.z; calculations {vertical axis) for a structure of overlapping spherical mod-
erator bubbles arranged stochastically in space with fuel filling the resulting gaps. The horizontal
axis represents the radius of bubbles r. Parameter of the family of curves is the true volune ratio
U/H.0.



A Simple Chord Length Model

Up to now the results for stochastic direct and inverse geometries are not comparable, because in
the first case the independent parameter is the radius of the fuel spheres, in the second case the
radius of the moderator bubbles. Both parameters are of the dimension of a length, but they lack
any general significance, being related to specific models.

A well proven approximation in reactor theory is the so called form independent approximation
using the notion of the chord length. The definition of the uranium chord length Sy is:

Sy = O (1)

where Vi, Oy are volume and surface area of the fuel.

Thus the chord length depends exclusively on the fuel volume and the ‘inner surface area’. For this
reason it is a much more general parameter than e.g. the sphere radius.

We now try to derive expressions for the U chord length in the direct and inverse case of our
model of overlapping spheres in stochastic geometry. To this end fuel volume and surface area are
understood as functions of the number n of spheres placed inside the (large) total volume V.

It is easy to see, that the volume Vi obeys the following differential equation:

dVy 47y, Vior — Vur @)
dn ~ 3 Viot

where 7 is our former radius of fuel balls. Using the following notatiouns for dimmensionless quan-
tities:

Vi
T =
Vtat
drri,
7 Wt
we get:
%:—L- =v(l — ) (3)

Using the initial condition z = vp at n = 1 the solution becomes:

=1~ (1~uyp)ell=™w (4)

orifn>>lduetovgK1:

z=1—e™0, (5)

a result to be expected.

Slightly more tricky is the derivation of a differential equation for the surface Oy, see fig.9, where
the addition of one more sphere is depicted and where in this rather crude description the boundary
U/H30 is represented by a plane.

The wanted diff. equ. for the surface area Oy then becomes:

— g2 Yoot = Vy —ryOy | Ov [77 AO(z)dz
— IITU -+
Viot Viot

(6)

The first term concerns the case, if the new sphere (dn = 1) as a whole fits into the space not
occupied by fuel. The second term concerns the case, if the sphere crosses the fuel/moderator
boundary. In this case the surface increase is AO(z) = cap - circle cut by sphere on boundary:

AO(2) = 2rry(ry — 2) — w(rf — 2°) = w(ry — 2)° )

i0
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Figure 9: Derivation of a diff. equ. for the surface area Oy

With the notation y = Oy /4nry, after integrating we get:

dy
—'/—+'uoy=1—-:1:
dn

With the initial condition y(1) =1 due to vy < 1 the solution is:

y = ne "

The chord length expressed in the dimensionless quantities z, ¥ und vo reads:

(®)

9)

(10)

Replacing 7 in equ.(9) by means of equ.(5) with z and substituting the obtained expression for y

in equ.(10) the result is:

41‘U T
3 (z~1)In{l-2z)

Sy =

Similarly, in inverse geometry:

; 4rmo
ny —_——
5S¢ 3n(z)

(11)

(12)

Both these formulae for the chord lengths show the expected behaviour for z — 0 and  — 1. Thus

for £ = 0 Sy — 4ry/3 , the chord length for isolated spheres. Likewise for z — 1 Sy — 00.

The fig.10 presents the results in direct and inverse geometries for overlapping spheres as well as
for the heap of touching spheres in dependence on the fuel cord length Syr. Obviously, for identic
fuel/moderator ratios the resuits roughly agree independent of the geometry. In view of the applied

rather simple model of chord length, ideal coincidence may not be expected.

it
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Figure 10: Results of ky, calculations (vertical axis) in dependence on the fuel chord length Spr.
The continuous lines represent results for structures of overlapping fuel spheres. The points with
triangles and errorbars refer to a heap of touching fuel spheres (U/H>0=0.83). The other points
with errorbars refer to the inverse geometry of overlapping moderator spheres (U/H,0=1.0, 1.25
and 1.50).

The Worst Case for UO. - pure HoO Mixtures

In the following we shall drop the boration of the moderator and will use pure HoO instead.
Furthermore, besides the enrichment of 2.5% values of 3.0 and 3.5% will be considered. The aim will
be to determine the worst case. Fig.11 presents the results obtained with the model of overlapping
fuel spheres. In contrast to the case of a slightly borated moderator, here the optimumn is placed
clearly outside the range of U/H,O volume ratios securing mechanical stability ( > 0.83, see
discussion above).

In the case of slightly borated moderator shown above (see fig.7 or 10), the maximum in ku
oceurred at U/H20 = 1.25, obviously within the region of mechanical stability. But with pure
H,0 the theoretical maximum ist located at U/H,O = 0.45, a value clearly causing mechanical
instability. Therefore we take as the U/H»O volume ratio in the worst case the value 0.83, realized
for a heap of touching spheres. By observing cross-sections of arrangements of overlapping spheres
generated as MCNP input using the SABRINA visualization program one can get a feeling, that
stability is probably lost already above the threshold of 0.83. Furthermore the increase in ko by
reducing U/H,O from the adopted 0.83 to the true optimal but unstable 0.45 is not too important
{from 1.33 to 1.35).

Up to now we have used stochastic distributions in space but fixed radii of the spheres. Likewise
we have done calculations with radii distributed around a mean 7 with a certain dispersion o,. In
all cases results for k£ have been below those with r fixed at 7. This fact is easily understandable
due to the convex shape of the dependence of k., on r (existence of a maximumn). In this respect
too, the ‘worst case’ is really worst.

Thus we retain for further use as the worst case the model of overlapping spheres with sphere
radius fixed at 0.87cn { or chord length = 4*(fuel volume)/(inner fuel surface)= 3.20cin). These
structure parameters do not change if the enrichment is raised from 2.5 up to 3.5% 2% U. With the
same results we could use the model of touching spheres with identical chord length and volume
ratio.

12
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Figure 11: Results of k., calculations (vertical axis) for 2.5% enrichment in *3U in dependence on
the fuel chord length Sy for UO, - pure HyO mixtures in the model of overlapping fuel spheres.
Parameter of the family of curves is the U/H,0 volume ratio.

4 Critical Slabs and Spheres in the Worst Case

A box with the worst structure defined above has been repeated in a threedimensional lattice. This
lattice has been used to fill an infinite slab or a sphere and to calculate their k.sf by means of
MCNP. Again the results are insensitive to small changes of the box dimensions. The results at
three values of the enrichment in **3U and in the presence or absence of an infinite water reflector
are contained in the following table.

L % >0 551 30] 3.5
dirit [em)] no reflector | 20.8 | 27.8 | 26.5
slab it with reflector | 19.9 | 17.6 | 16.5

no reflector | 2480 | 2310 | 2210
with reflector | 1660 | 1460 j 137

no reflector | 31.3 | 20.2 | 28.0
with reflector | 26.1 | 24.3 | 23.0
no reflector | 1063 | 868 | 765
with reflector {| 620 | 500 | 424

Mrie [kg/m?)

Tkrit [cm]

sphere

Mrit [ky]

Table 1: Results of criticality calculations for an infinite slab and a sphere for the worst case
(structure with fuel chord length 3.20 cm und fuel/moderator volume ratio 0.83). The masses refer
to UOy with the given enrichment.



5 Conclusion

The present paper tries to create a certain intuitive feeling for the dependencies of the multiplication
factor k- of UOy — Ho O mixtures.

Composition and structure of the corium in the ‘worst case’ have been proposed and made plausible.

The critical surface density of an infinite slab and the critical mass of a sphere of UQ, — HaO
mixtures for the worst case with respect to their composition and structure have been evaluated.

MCNP appears to be a proper tool for calculating any macroarrangement of a great number of
small spheres modelling a stochastic structure.
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