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Abstract

Off-shell Ward identities in non-abelian gauge theory continue to be a subject

of active research, since they are, in general, inhomogeneous and their form

depends on the chosen gauge-fixing procedure. For the three-gluon and four-

gluon vertices, it is known that a relatively simple form of the Ward identity

can be achieved using the pinch technique or, equivalently, the background-

field method with quantum Feynman gauge. The latter is also the gauge-fixing

underlying the string-inspired formalism, and here we use this formalism to

prove the corresponding form of the Ward identity for the one-loop N - gluon

amplitudes.
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1. Introduction: Ward-Takahashi and Slavnov-Taylor identities

Ward identities, also known as Ward-Takahashi identities, are the quantum

counterparts to Noether’s theorem in classical physics. They are identities be-

tween correlation functions stemming from the global and gauge symmetries

of the theory, introduced first by Ward [1] in 1950 and later generalized by

Takahashi [2].
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The original work of Ward and Takahashi was concerned with U(1) gauge

symmetry and current conservation in QED. Here the “Ward identity” refers to

on-shell matrix elements, and is usually written as

kµMµ = 0 , (1.1)

where Mµ is the matrix element defined by M = εµMµ, indicating that the

longitudinal components of the photon’s polarizations do not contribute to scat-

tering amplitudes. See, e.g., [3] for detailed discussion.

The “Ward-Takahashi” identity is more involved, since it concerns off-shell

quantities. In QED, in its most basic form it can be written as

Γµ(p, p) = − ∂

∂pµ
Σ(p) , (1.2)

and allows one to relate the electron wave function renormalization factor Z2 to

the vertex renormalization factor Z1.

After the development of QCD, in the seventies the generalization of these

QED identities to the non-abelian case became an active field of research. With

respect to the on-shell S-matrix identities (1.1) one finds no essential differences

between QED and QCD, except that in the non-abelian case the vanishing of

the effect of the longitudinal gluon polarizations usually involves intricate can-

cellations between one-particle irreducible and one-particle reducible diagrams

(see, e.g., [4]).

To the contrary, the generalization of the Ward-Takahashi identities to the

non-abelian case leads to the so-called Slavnov-Taylor identities [5, 6, 7], and

those still remain a subject of active investigation (see, e.g., [8] and refs. therein).

This is because these identities in general not only provide relations between

different N -point functions, but also mix up the physical gauge bosons with the

ghosts, and in a way that depends on the gauge-fixing procedure. Thus they

tend to be much more non-trivial than their QED prototype. Moreover, they

should hold perturbatively and non-perturbatively, and in the bare theory as

well as in the renormalized one. Therefore Slavnov-Taylor identities also put

restrictions on the renormalized coupling constants for vertex functions which
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has been studied in detail by many authors, see e.g. [9, 10, 11].

The gauge-fixing dependence constitutes a serious problem for applications of

the Schwinger-Dyson equations in QCD. Those equations couple an infinite num-

ber of Green’s functions, and attempts at explicit solution normally require a

truncation to a finite subset of them. This truncation should be gauge-invariant,

which in the non-abelian case is not easily achieved. This triggered the devel-

opment of the “pinch technique” (‘PT’) [12, 13], a systematic procedure that

allows one to construct, starting from the standard Green’s functions derived

from the gauge-fixed QCD Lagrangian, improved “gauge-invariant” vertices that

fulfill simple QED-like off-shell Ward identities, not involving the ghosts. For

the N -gluon vertices, which are our subject of interest in this letter, this pro-

cedure has, to the best of our knowledge, been carried out only for N = 3 and

N = 4, and only at the one-loop level. The three-point vertex is special in that

it involves the color indices only as a global prefactor:

Γabcµ1µ2µ3
(k1, k2, k3) = −ifabcΓµ1µ2µ3(k1, k2, k3) , (1.3)

where the fabc are the structure constants of the Lie algebra, [T a, T b] = iT cfabc.

As shown by Cornwall and Papavassiliou [14], when constructed using the PT

it will obey the identity

kµ1

1 Γµ1µ2µ3
(k1, k2, k3) = −(k22gµ2µ3

− k2µ2
k2µ3

)
(

1−Π(k22)
)

+(k23gµ2µ3
− k3µ2

k3µ3
)
(

1−Π(k23)
)
,

(1.4)

where Π(k2) is the gluon vacuum polarization. This form of the Ward identity

holds unambiguously for the scalar and spinor loop cases, but for the gluon

loop with other gauge fixings in general there will be additional terms on the

right-hand-side involving not only the gluon propagator, but also the ghost

propagator and the gluon-ghost-ghost vertex [10, 15, 16]. The corresponding

identity for the four-gluon vertex was given by Papavassiliou [17]
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kµ1

1 Γa1a2a3a4µ1...µ4
(k1, k2, k3, k4) = −igfa1a2cΓca3a4µ2µ3µ4

(k2 + k1, k3, k4)

−igfa1a3cΓa2ca4µ2µ3µ4
(k2, k3 + k1, k4)

−igfa1a4cΓa2a3cµ2µ3µ4
(k2, k3, k4 + k1) .

(1.5)

From a somewhat different perspective, the issue of the gauge-fixing dependence

of the off-shell Ward identities arises also in the context of SUSY extensions of

QCD [18], and was studied in detail for the three-gluon vertex by Binger and

Brodsky [16]. Here as a minimal requirement one would wish to have a gauge-

fixing procedure compatible with the supersymmetry, in particular with the

structure of supermultiplets; e.g., one would like to avoid having to use different

Ward identities for amplitudes that differ, say, only by different components of

the same superfield running in a loop. For this purpose, the background-field

method (‘BFM’) [19, 20] turned out to be very suitable, and in fact equivalent

to the PT, since it was shown in [21, 22] that the application of the BFM with

quantum Feynman gauge leads to exactly the same Green’s functions as the PT.

The BFM with quantum Feynman gauge is also the formalism underlying

the construction of the one-loop N -gluon amplitudes in the “string-inspired

worldline formalism” [23, 24] which to some extent mimics the construction of

gauge boson amplitudes in string perturbation theory. This formalism there-

fore is guaranteed to lead to the same simple and ghost-free, QED-like off-shell

Ward identities as the PT. Moreover, one of the properties that it inherits from

string theory is that it allows one to unify the scalar, spinor and gluon-loop

contributions to these amplitudes in a way that would be difficult to achieve

in other approaches, namely by a set of simple pattern-matching rules at the

parameter-integral level due to Bern and Kosower [23, 25, 26]. These rules were

originally derived from world-sheet SUSY, but can also be derived by more di-

rect means [27, 28]. In the present letter, we will use these properties to show

that the identities (1.4), (1.5) generalize to the N -gluon case in the simplest

4



possible way, namely as 2

kµ1

1 Γa1a2···aNµ1...µN
(k1, . . . , kN ) = −igfa1a2cΓca3a4···aNµ2...µN

(k2 + k1, k3, · · · , kN )

−igfa1a3cΓa2ca4···aNµ2...µN
(k2, k3 + k1, · · · , kN )

...

−igfa1aNcΓa2a3a4···cµ2...µN
(k2, k3, · · · , kN + k1) .

(1.6)

2. String-inspired representation of gluon amplitudes

Around 1990, Bern and Kosower used the field theory limit of string theory

to derive new parameter integral representations for the QCD one-loop N -gluon

amplitudes [25, 26]. In its original form this formalism was restricted to on-shell

matrix elements, but it was soon extended to the off-shell case by Strassler using

worldline path integral representations of the same amplitudes [23, 24, 27, 29].

More recently, this version of the formalism has been found particularly suitable

for the study of non-abelian form factor decompositions [30, 31, 32].

Let us briefly summarize how the one-loop off-shell 1PI N -gluon amplitudes

are constructed in the string-inspired formalism for a scalar, spinor or gluon

loop (for details see [27]). The starting point is the following path-integral

representation of the scalar loop contribution to this amplitude:

Γscal(k1, ε1, a1; · · · ; kN , εN , aN ) = (ig)N
∫ ∞
0

dT

T
e−m

2T

∫
Dx e−

∫ T

0
dτ 1

4 ẋ
2

×Vscal[k1, ε1, a1] · · ·Vscal[kN , εN , aN ] .

(2.1)

Here m is the mass and T the proper-time of the scalar in the loop. The integral∫
Dx runs over all closed loops in space-time with periodicity T . At fixed T ,

2Eq.(1.6) was already stated in [32] but not proven there.
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each gluon is represented by a vertex operator

Vscal[ki, εi, ai] = T ai
∫ T

0

dτεi · ẋi eiki·xi , (2.2)

where ki and εi are the gluon momentum and polarization, T ai denotes a genera-

tor of the color group, and we have abbreviated ẋi ≡ d
dτ x(τi). The polarization

vectors εi at this stage are just book-keeping devices, and do not fulfill any

on-shell constraints.

This is the full amplitude; each gluon vertex operator is integrated along

the loop independently, so that the color generators T ai appear under the color

trace in all possible orderings. It will be sufficient to consider the contribution

corresponding to the standard ordering τ1 ≥ τ2 ≥ . . . ≥ τN , to be denoted by

Γa1...aNscal . It can be written as

Γa1...aNscal (k1, ε1; · · · ; kN , εN ) = (ig)N
∫ ∞
0

dT

T
e−m

2T

∫
Dx e−

∫ T

0
dτ 1

4 ẋ
2

×Vscal[k1, ε1, a1] · · ·Vscal[kN , εN , aN ]

×θ(τ1 − τ2)θ(τ2 − τ3) · · · θ(τN−1 − τN )δ(
τN
T

) .

(2.3)

Apart from imposing the proper-time ordering, one can use here also the trans-

lation invariance in proper-time to reduce the number of integrations by setting

τN = 0. The full amplitude (2.1) is obtained from the ordered one (2.3) by

summing over all (N − 1)! inequivalent permutations.

In the string-inspired formalism the path integral (2.3) is done by gaussian

integration, leading to the following “Bern-Kosower master formula”:

Γa1...aNscal (k1, ε1; · · · ; kN , εN ) = (ig)
N

tr
(
T a1T a2 · · ·T aN

)
(2π)DiδD

(∑
ki

)
×
∫ ∞
0

dT (4πT )
−D

2 e−m
2T

∫ T

0

dτ1

∫ τ1

0

dτ2 . . .

∫ τN−2

τN=0

dτN−1

× exp

{ N∑
i,j=1

[1

2
GBijki · kj − iĠBijεi · kj +

1

2
G̈Bijεi · εj

]}
|multi−linear .

(2.4)

Here D is the space-time dimension, and the notation |multi−linear means that,

after the expansion of the exponential, only terms linear in every polarization
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vector should be retained. GBij stands for the “bosonic worldline Green’s func-

tion”

GB(τi, τj) =| τi − τj | −
(τi − τj)2

T
− T

6
. (2.5)

Writing out the exponential in eq.(2.4) one obtains an integrand

exp

{
·
}
|multi−linear = (−i)NPN (ĠBij , G̈Bij) exp

[
1

2

N∑
i,j=1

GBijki · kj
]
, (2.6)

with a certain polynomial PN .

Starting from this parameter-integral representation of the scalar loop con-

tribution to the N -gluon amplitude, one can now generate the contributions

of the spinor and gluon loop in the following way. There exists a system-

atic integration-by-parts procedure that eliminates all second derivatives of GB

[25, 26, 30, 33]. After this, a parameter-integral representation of the spinor

loop contribution can (up to the global normalization) be generated from the

scalar-loop one by replacing every “τ -cycle” appearing in QN , that is, a product

of ĠB whose indices form a cycle, according to the “cycle-replacement rule”

ĠBi1i2ĠBi2i3 · · · ĠBini1 → ĠBi1i2ĠBi2i3 · · · ĠBini1 −GFi1i2GFi2i3 · · ·GFini1 ,

(2.7)

where GF12 ≡ sign(τ1 − τ2) denotes the ‘fermionic’ worldline Green’s function.

A similar “cycle replacement rule” allows one to generate a parameter-integral

representation of the gluon-loop contribution.

For our present purpose it will further be important that in the partially in-

tegrated integrand each τ -cycle ĠBi1i2ĠBi2i3 · · · ĠBini1 appears multiplied with

a corresponding “Lorentz-cycle” tr(fi1fi2 · · · fin), where

fµνi ≡ kµi ε
ν
i − ε

µ
i k

ν
i , (2.8)

is the field-strength tensor of gluon i [24, 28, 30].

3. Derivation of the N-gluon Ward identity: scalar loop

Let us now turn to the Ward identity in the N -gluon case. Starting from

the path-integral representation (2.1) of the scalar contribution to the N -gluon
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amplitude, and replacing εi by ki, the corresponding vertex operator becomes

the integral of a total derivative, and collapses to boundary terms:

Vscal[ki, εi]
εi→ki= T ai

∫ τi−1

τi+1

dτi ki · ẋ(τi) e
iki·x(τi)

= −iT ai
∫ τi−1

τi+1

dτi
∂

∂τi
eiki·x(τi)

= −iT ai
[
eiki·x(τi−1) − eiki·x(τi+1)

]
.

(3.1)

After plugging this back it into eq. (2.1) for the natural ordering τ1 ≥ τ2 ≥

· · · τi−1 ≥ τi ≥ τi+1 · · · ≥ τN we have (in the following we omit the global

energy-momentum conservation factor)

Γa1···aNscal [k1, ε1; · · · ; kN , εN ]
εi→ki= −i(ig)N tr(T a1 · · ·T ai−1T aiT ai+1 · · ·T aN )

∫ ∞
0

dT

T
e−m

2T

×
∫
Dx e−

∫ T

0
dτ 1

4 ẋ
2
{∫ T

0

dτ1ε1 · ẋ(τ1)eik1·x(τ1) · · ·
∫ τi−2

0

dτi−1εi−1 · ẋ(τi−1)ei(ki−1+ki)·x(τi−1)

×
∫ τi−1

0

dτi+1εi+1 · ẋ(τi+1) eiki+1·x(τi+1) · · ·
∫ τN−1

0

dτNεN · ẋ(τN )eikN ·x(τN )

−
∫ T

0

dτ1ε1 · ẋ(τ1)eik1·x(τ1) · · ·
∫ τi−2

0

dτi−1εi−1 · ẋ(τi−1)eiki−1·x(τi−1)

×
∫ τi−1

0

dτi+1εi+1 · ẋ(τi+1) ei(ki+ki+1)·x(τi+1) · · ·
∫ τN−1

0

dτNεN · ẋ(τN )eikN ·x(τN )

}
.

(3.2)

Let us now focus on the term from the lower boundary τi = τi+1. If we apply

the same replacement to the ordering that differs from the standard one only

by an exchange of τi and τi+1, τ1 ≥ τ2 ≥ · · · τi−1 ≥ τi+1 ≥ τi ≥ · · · τN , the same

term will be generated from the upper boundary of the τi integral, only with

the opposite sign and an interchange of the color matrices T ai and T ai+1 . Thus

in the abelian case all the boundary terms would cancel in pairs, but in the

non-abelian theory instead each pair produces a color commutator. Inserting

the ith vertex operator in all N possible ways, but keeping the order of the

other vertex operators fixed, it is then easy to arrive at (1.6) (where we have

now set i = 1).
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4. Spinor and gluon loop

The same identity (1.6) could be derived analogously for the spinor and gluon

loop cases at the path-integral level using appropriate supersymmetric general-

izations of (2.1), (2.2), (2.3) (those representations have been summarized, e.g.,

in [31]).

However, we find it more convenient to show the independence of the Ward

identity of spin by the following argument. When substituting any εi by ki in

the partially integrated integrand there are two types of terms, those where the

index i belongs to a cycle and those where not. For the first type of terms the

polarization vector εi is contained in the field strength tensor fi, so that they get

annihilated by the substitution, and this is independent of the application of the

loop replacement rules. The second type of terms are the ones that produce the

right-hand side of the Ward identity, however since in those all the cycle factors

are unaffected by the substitution εi → ki they appear as identical factors under

the parameter integral on both sides, so that again the form of the identity, once

established for the scalar loop, does not get altered by the application of the

loop replacement rules.

5. Conclusions

To summarize, we have demonstrated that the one-loop QCD 1PI N -gluon

amplitudes off-shell obey the Ward identity (1.6), as stated in our previous work

[32]. This identity holds unambiguously for the scalar and spinor loop cases,

but for the spin one case if and only if the gauge fixing is done using the BMF

with quantum Feynman gauge (or equivalently using the pinch technique). To

the best of our knowledge, this Ward identity previously has been treated in the

literature only up to the four-point case [17]. However, an analogous identity

has been derived in string theory in a way similar to ours [34].

As a final comment, let us remark that the fact that the BFM for the gluon

loop leads to the same simple, ghost-free Ward identities as for the scalar and

spinor loop only if the gluon in the loop is taken in Feynman gauge also implies
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that a generalization of the existing worldline path integral representations of the

nonabelian effective action [23, 27] to other covariant gauges must by necessity

run into some algebraic complications.
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