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A reservoir computing/echo-state network (ESN) is used here for the purpose of predicting the
spread of a disease. The current infection trends of a disease in some targeted locations are efficiently
captured by the ESN when it is fed by the infection data of other locations. The performance of
the ESN is first tested with synthetic data generated by numerical simulations of independent
uncoupled patches, each governed by the classical Susceptible-Infected-Recovery model for a choice
of distributed infection parameters. From a large pool of synthetic data, ESN predicts the current
trend of infection in 5% patches by exploiting the uncorrelated infection trend of 95% patches.
The prediction remains consistent for most of the patches approximately for 4 to 5 weeks. The
machine performance is further tested with real data of the current COVID-19 pandemic collected
for different countries. We show that our proposed scheme is able to predict the trend of the disease
up to 3 weeks for some targeted locations. An important point to note that no detailed information
of the epidemiological rate parameters is needed, the success of the machine rather depends on
the history of the disease progress represented by the time evolving data sets of a large number of
locations. Finally, we apply a modified version of our proposed scheme for the purpose of future

forecasting.

I. INTRODUCTION

The impact of the unprecedented pandemic COVID-19
is widespread practically collapsing all human activities
around the world. A severe crisis arises in the pub-
lic health systems and economy everywhere. In this ex-
treme condition, various agencies, government and non-
government, are looking for ways and means to stop
spreading of the virus and to develop a health support
system appropriate for mitigating this disaster. Predict-
ing the number of infected cases is challenging although
it is the most important task for understanding the grav-
ity of spreading and to keep preparing the public health
system to innumerably large demands [IH4].

An accurate prediction methodology may enable the
policy makers to deter the spreading of the pandemic
by designing and implementing effective disease control
strategies [BHI3]. A wide range of models are being de-
veloped, by this time, borrowing ideas from statistical
physics and epidemiology, to understand the trend of
disease progression for the purpose of prediction. Data-
driven techniques such as machine learning and artificial-
intelligence tools are applied to forecast the future trend
of COVID-19 infected cases [I4] [I5]. For instance, ex-
ponential smoothing model can forecast [3] the COVID-
19 confirmed infected cases. The recurrent neural net-
work approach has been used [16] to predict the early
trend of COVID-19 in China by training the machine
from SARS data of the year 2003. Recently, Li et al.
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[I7] considered the spatiotemporal information of infec-
tion where susceptible-infected-recovered (SIR) dynam-
ics (constructing differential equations) is adjusted with
recurrent neural network to forecast the temporal data
with limited resources. Many other approaches such
as deep learning using long-short-term-memory network
(LSTM) [I8, 19], support vector machine [20, 21], hy-
brid autoregressive moving average model [20, 22], neu-
ral network [23], supervised XGBoost classifier [19], ran-
dom forest algorithm [24] have been utilized to predict
the infection trend as well as the mortality and severity
of patient conditions. However, these prediction-based
techniques heavily depend on the several structural pa-
rameters as well as intrinsic components of the machine
itself. The successful forecasting by machine learning is
also deterred by limited availability of temporal data.
The key question we raise here whether there is any pos-
sibility of predicting the infection trend of a disease, in
general, in targeted locations by feeding infection data
of the disease available from other locations around dif-
ferent countries? We accept the constraint that detail
information on basic reproduction number and the force
of infection of the locations may not be available.

We attempt to address this issue in a simple way us-
ing the reservoir computing i.e., the echo-state network
(ESN). ESN is a modified version of the recurrent neu-
ral network that easily avoids the training related chal-
lenges and tunes the output layer only to mimic the tar-
get data at the time of a training procedure. ESN has
been used extensively to predict complex signals rang-
ing from chaotic time series to stock-price data [25H32]
and currently, it has been shown that it can easily cap-
ture critical onset of generalized synchronization [33H36]



and detect collective bursting in neuron populations [37].
Therefore, ESN showed encouraging records of handling
multiple inputs of temporal data and, ability to trace
the correlation between them [34], 37]. Motivated by this
fact, we have utilized the strength of the ESN to develop
a strategy for predicting the spread of any infectious dis-
ease from the available collection of multitude of infection
data of the same disease.

At first we check the efficiency of the ESN for a large
collection of synthetic epidemic data generated from clas-
sical SIR model. Finally, the prediction capability of
the ESN is carefully investigated with available incidence
data of COVID-19 from large number of locations around
the world with an aim to identify the real outbreak sce-
nario in other targeted locations. The machine works
successfully to predict spreading of the disease to the ex-
tent of two weeks and little more. ESN is thus shown as
an effective tool for data-driven future prediction of any
infectious disease, in general. Note that, a future predic-
tion from the previous data (in each location) is not the
sole objective of this work. A non-monotonic trend of
real data set always resists the forecasting of the future
trend. Being aware of this drawback, we adopt an al-
ternative formalism: whether a machine (here ESN) can
capture the trend of infection of target locations by uti-
lizing the infection trend of other locations at the same
time. As a result, this alternative formalism (with some
adjustment) can truly forecast the future trend of infec-
tion.
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FIG. 1: Training and testing scheme using echo state
network. Upper panel (light red boxes) are the input
parts. Lower panel (light blue parts) in the left represents
the data set of the output data. Right corner panel (deep
blue box) is the predicted/testing data.

II. DESCRIPTION OF ECHO-STATE
NETWORK (ESN)

In this study, a standard leaky tanh network is con-
sidered as ESN. The dynamics of each reservoir node is
governed by the following recursive relation [25]:

r(t+1) = (1— a)r(t) + atanh (Wer(t)
+Wins(t)). (1)

Here r(t) is Nyes dimensional vector denotes the state of
the reservoir nodes at time instant ¢ and s(¢) is the M-
dimensional input vector. The matrices Wy e (dimen-
sion: Nyes X Nyes) and Wy, (dimension: Nyes X M) rep-
resent the weights of the internal connection of reservoir
nodes and weights of the input, respectively. The pa-
rameter « is the leakage constant, which can take the
values between 0 to 1. It is to be noted that the tanh
function is operated element-wise. We take a = 0.5 and
Nies = 1000 throughout our simulations. The reservoir
weight matrix W is constructed by drawing random
numbers uniformly over the interval (-1,1) and the spec-
tral radius of the matrix W, is re-scaled to less than
unity. The matrix Wy, containing input weights is also
generated by randomly chosen elements from the interval
(-1,1).

Next we consider time series data of N patches, among
which the data of M patches are fed into the machine and
the remaining N — M patches are targeted whose time
signals are to be predicted by ESN. A fraction of data
points (when ¢ = 0,1,...,t,.) from each of the infected
signals is used for training purpose (see upper left panel
(light red) illustrated in a scheme in Fig. . At first
target is to identify the infection of the rest of the patches
(N — M) by the ESN during the training or learning
process (lower left panel, light blue in Fig. 1). Once the
machine is trained, input from M patches with rest of the
data points (t, + 1,.....,tana1) are fed into the machine
(upper right panel, light red in Fig. 1) to predict the
infection in the N — M patches (lower right panel, deep
blue in Fig. 1).

At each time ¢, the input vector s(¢) will have M num-
ber of elements: [Z;(t),Za(t), ..., Zas (t)]T. At time ¢, the
contribution of the input weight matrix in the dynamics
of the reservoir (see Eqn. [1) can be written as follows:

Win(1,1) -+ Wi (1, M) Ty (t)
Win(2,1) -+ Wy(2,M) Io(t)

. . . X .
Win(Nresv 1) : : Win(Nresa M) ' IM (t)

In the training process, at each time instant ¢, the
reservoir state r(t) and input s(t) are accumulated in
X(t) = [1;s(t); r(t)]. The output relation can be written
in vector form as:

Y = W X. (2)



Here, Y is a matrix of dimension (N — M) x K, where
K is the length of the time signal. The matrix X having
dimension (Nyes + M + 1) x K look like:

i 1 1 1 )
7(1,1)  Z(1,2) (1, K)
7(2,1)  Z(2,2) (2, K)
I(J\:L 1) I(J\:L 2) I(J\4:7 K)
r(1,1) (L2 r(1,K)
r(2,1)  r(2,2) r(2,K)

_T(Nr:esal) T(Nr:e572) T(Nre:mK) .

The matrix Wy, can be determined by Ridge regres-
sion method as follows:

Wou = YXT(XXT + A1), (3)

where X is the regularization factor that avoids over fit-
ting. Y is the time series data of the targeted patches
and T is identity matrix of dimension (Nyes + M + 1) x
(Nres + M +1). Note that when A = 0, Eq. |3| reduces to
least-square method.

We consider N patches, in which M number of patches
are fed into the machine for training purpose. At time
t, the dimension of the output vector of the targeted
patches will be (N — M) x 1. Thus the output matrix (
t € [tr+1,ty]) can be written as (Fig. 1)

Tar41(t)
Tary2(t)
y(t) = .

In(t)

III. PREDICTION ON SYNTHETIC DATA

The classical SIR model is used to numerically generate
a large set of independent synthetic time series data (say
1 =1,2,...,N) on infection for different sets of disease
transmission rates and initial fraction of infected popu-
lation. The disease spreads into the patches or locations,
where the SIR dynamics of the j** isolated location is
captured by a set of 3-coupled equations:

Si(t) = —B;S;()Z;(t), (4)
Zi(t) = BiS;(I;(t) — v Z;(t), (5)
Ri(t) = %Ii(1). (6)

Based on health conditions, the population of the
4t location is categorized into three compartments:
susceptible (S;), infected (Z;), and recovered (R;).
The parameters 3; and ; denote the rate of disease
transmission and recovery rate, respectively. We fix
the recovery rate at 73 = 72 = ... = v = 1/14 day™*

for this study. We generate a set of N independent
synthetic data series by random choices of 3; from
uniform distribution #/(0,0.25). The initial infections
(Z;(0)) are also taken from ¢(10~7,107%) and R;(0) =0
and, S;(0) = 1 —Z;(0) — R;(0). The choice of f; is
based on available data and country level estimation
of basic reproduction number for COVID-19 [38] that
varies from 0 to 3.5. The model is integrated for
a time interval [0,300] with a time step 0.01 using
the RK4 routine. Therefore, each synthetic data set
contains 30000 data points (300 days). Since a variation
in disease transmission rate (/;) and initial fraction of
infected population (Z;(0)) lead to diversity in peak sizes
as well as the time duration for reaching the peak of
infection, we treat the independent synthetic data sets as
collected infection data for different regions or countries
where an outbreak of the same disease takes place.
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FIG. 2: Schematic representation of the ESN and signal
variability. (a) Infection data inputs (red signal) fed into
the machine. Dashed vertical line (at ¢t = t,.) signifies
a time limit of data point inputs to the machine. (b)
ESN structure: input layer, reservoir and output layer.
The weights of input and the reservoir once selected are
kept fixed throughout the training and testing procedure.
(c) Data output of targeted locations or patches (blue
signals). Left parts of the dashed vertical lines (¢ < ¢,.)
are closely mapped with the machine generated signals
at the time of training. Right parts of the vertical lines
are predicted data (red circles) from the machine at the
time of testing the ESN.

To explain our scheme more clearly, we have drawn
randomly selected infected signals (Z;) in Fig. [2 ( ) (red
lines). Due to a distribution of disease transmission rate
and initial state (initial fraction of infected population),
the time to reach a peak of infection varies from one
isolated patch to other patches as shown in a number of
time domain plots of Z (red lines). For a comparison,
we have drawn vertical lines at a fixed time ¢ = ¢, in
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FIG. 3: (a)-(e) Snapshot of synthetically generated data against machine based data, (Z}) vs. (Z};) plot for data
taken at time points ¢t = 7, 14,21, 28, and 35, respectively. Results of 50 patches are presented here. 5 randomly chosen
nodes are marked by square, diamond, pentagram, triangle and cross marks. At ¢t = 7, Z}; and I} are correlated
as they lie on the diagonal line, signifying the machine can predict the real data efficiently. (b) At ¢ = 14, two data
points (diamond and pentagram) are slightly deviated from their original counter part. The error increases for a

longer duration (¢ = 21,28, 35) of forecasting as shown in (c)-(e).

However, most of the patches (green circles) lie

on the diagonal line. (f-j) The infection trend of 5 randomly chosen nodes are shown for five weeks. Data generated
by simulation of the SIR model is shown with thick lines (blue line). The machine generated data closely predicts
infection in some of the patches (marked by triangle, cross and square) upto 30-35 days. For two patches (marked by
pentagram and diamond), the machine generated data are deviated after 10 days.

each of the red signals (Fig. 2(a)). The top-most signal
is infected earlier and reaches the zero state before the
time t,.. The second signal below from the top reaches
its peak at ¢ = ¢,.. The third one reaches the infection
peak earlier than ¢t = ¢,.. The last one at the bottom is
gradually increasing and yet to reach the peak at time
t,. The sequence of data until t = ¢, of each red signal is
fed into the ESN (Fig. 2(b)) for training purposes. Note
that the ESN has three components, (a) input layer,
which captures the input data, (b) reservoir network
that associates the input data to its nodes generally in
a nonlinear way, (c¢) output layer, which generates the
desired or targeted data. In our proposed scheme, the
ESN output layer is controlled in such a way that it
closely maps the output signal (blue lines) up to the time
t = t,. (Fig. 2(c)). Noticeably, the part of the output
signals (left of the dashed vertical lines; in blue curves)
are not similar to each other: the upper one does not
reach at the peak value whereas the lowermost signal
just crosses the peak before t = ¢,.. Once the training
process is over, all the components of the ESN are kept
fixed and a further stream of data at the input layer
(t > t,, right part of the dashed vertical line; Fig. 2(a))
are passed into the ESN to predict the target signals
beyond the time t = t¢,.. The predicted sequences are
shown in circles (red circles) at outputs almost in perfect
matching with the targets (blue lines). ESN shows a
strong ability to predict the targeted data for almost all
the data streams.Thus we claim here: Feeding a wide
variety of independent signals (for random choices of B

and Z;(0)) into ESN enables it to be well trained. ESN
does not require precise information of 5; or ;.

For detailed clarification, we consider N = 1000 inde-
pendent time signals of infected data (Z) among which
M = 950 time series (95% of the whole data set of all
equal size) are used for training purpose. We target the
remaining N — M = 50 patches (5% of the whole data
set) to be predicted by this 95% data set through ESN
at the time of testing. A data set of t,. = 100 days, i.e.,
10000 data points is used for the training purpose. After
the ESN is trained (when the output layer is properly
tuned), we predict the infection for next 35 days (3500
data points) for the remaining 50 time series data. The
synthetic time series is obtained by integrating Eqn. 4
for the j'" location as designated by Zp whereas the
ESN predicted data for the same is denoted by Z7,.
Figure (a) describes the correlation between Z7 and
Zy (n = 951,952, ...,1000) for all the patches at time
t = 7 (data during training is not shown here). All the
patches (represented by filled green circles and other five
markers for 5 patches) lie on the diagonal line signifying
an excellent accuracy of prediction of the trained ESN.
Five randomly identified patches are shown by five
markers (triangle, pentagram, diamond, square, and
cross markers). The corresponding signals are shown
in Fig. 3(f-j), where the true synthetic data (generated
from Eqn. (4)) are plotted with thick lines (blue line).
Noticeably, signal data of each patch closely matches
with the true data at ¢ = 7 confirming that ESN predicts
the trend of all patches with higher accuracy. Next



we have checked Zp and Z¥, data at t = 14" day as
shown in Fig. 3(b). Most of the patches (green circles)
still lie on the diagonal line confirming the prediction
ability of ESN, however, few patches (diamond and
pentagram) are little deviated from the diagonal line,
which is further confirmed from the Fig. 3(g-h) where
the predicted and the true signals start to deviate to
each other after ¢ ~ 14 days. The more we increase
the time of prediction, the larger a deviation occurs for
these two particular cases (see the position of pentagram
and diamond markers in Fig. 3(c-¢)). Three particular
patches (triangle, square and cross) are predicted with
higher accuracy as they almost remain on the diagonal
line at t = 21,28, 35. The related continuous time signals
for the three patches are shown in Figs. 3(f), 3(i) and
3(j), respectively. A large fraction of green patches move
along the diagonal lines ensuring the higher prediction
ability of ESN. Noticeably, the ESN can efficiently
predict the signal during an increasing trend (cf. Fig.
3(h) for 10 days and Fig. 3 (i) for 30 days). Also, it can
capture the decreasing trend (Fig. 3(g) for 14 days) and
predict both for 35 days (Figs. 3(f) and 3(j)). Thus, the
non-monotonicity of the infection trend can be captured
by ESN with higher accuracy. Noteworthy that the
proposed approach works well if we increase the number
of target locations up to 10% — 20% (we have checked,
but results are not shown here). It was shown that
under suitable conditions, ESN of size N can memorize
the previous inputs of size N[25]. Also for complex
systems (e.g chaotic signals), the ESN has ability to
predict in a short time scale which is actually greater
than the Lyapunov time scale [26]. In our example cases,
signals are not chaotic, however, the epidemic curves
are sensitive to initial states (initial infection) leading to
different outcomes [39]. On the other hand, the intrinsic
epidemiological parameters of patches are not identical.
Therefore, time to attain the maximum of infection and
peak of infection will vary from node to node. Thus
the accuracy of prediction may fail after a certain time.
From our numerical simulation, it is clear, for model
generated data, that all are accurately predicted up to
two weeks. After that, due to the limitation of memory
capacity of the reservoir, time signal of certain nodes are
poorly captured and machine generated data behaves
abruptly in Fig. 3 (g).

Next we try to validate our scheme using COVID-19
infected data set. We have already confirmed that the
ESN easily predicts the data of targeted locations by
exploiting the infectious data of other locations (at the
same time). In the next section, we re-investigate the
efficiency of ESN for COVID-19 cases. It needs a special
mention that our scheme does not require any specific
knowledge of the reproduction number of each location,
duration of intervention (lock down) and impact of
mobility within the locations.

IV. PREDICTION ON REAL DATA

To check the feasibility of prediction by ESN in a real
outbreak scenario, we consider time-series data sets of
189 locations consisting of daily new cases of COVID-
19 [40], [https://covid19.who.int/]. We have used daily
infected data for all the locations/patches for 279 days
(from 22 January to 26 October 2020). For training pur-
pose, we consider the infection data for 257 days (22 Jan-
uary to 4 October) of each location. We decompose the
entire set into two groups. Infected data of 179 locations
are fed into the ESN at the time of training and predict
the current infection trend of other 10 locations. The
output weights are tuned in such a way that it can cap-
ture the infected cases for the 10 patches at the time of
training. Once the training is over, we use infection data
for 22 days of 179 locations to predict the infection trend
of 10 locations. We have considered the size of the reser-
voir 1000 x 1000, and fixed the leaking rate at o = 0.5 and
hence, the input matrix size is 1000 x 179 and the output
matrix is 1179 x 10. We predict the infection trend for 22
days extending from 5" October to 26! October 2020.

To pre-process the data, we have used the savgol filter
(python package). We consider all provinces of China and
all states of USA, Australia, France and India. We have
ignored data of some locations, which are not severely
affected by the disease; data are removed if the cumu-
lative infection is lower than ~ 10%. For the prediction
purpose, we have randomly picked 5 states of India (Ra-
jasthan, Telengana, Tripura, Uttar Pradesh, and West
Bengal) and 5 other countries (Croatia, Finland, Ger-
many, Israel, and Italy). Thus ESN can predict the cases
of infection in most of the targeted locations for 3 weeks
as shown in Fig. [4] (a~j) with real data (blue lines) and ma-
chine generated data (red dashed lines with circle). Note
that daily infection has significantly increased for Ger-
many, Italy and Croatia as the disease reappears there.
The shaded grey regions (from October 5 to October 26)
demarcate the predicted regimes for each location. For
a better clarity, we have also shown the predicted data
(for the shaded regions) separately in zoomed versions
(second and fourth rows of the Fig. 4). Our proposition
can efficiently determine the increasing or the decreasing
trend of infection in the targeted locations. Interestingly,
for Finland (Fig. 4(b)), ESN captures both the trends:
initially increasing and decreasing at later time. Thus
ESN performs well for most of the locations randomly
chosen from a large pool of infected data sets and pre-
dicts 5% of the entire data set using the 95% data set.
We have checked that 20% patches can be predicted by
our scheme at most for two weeks (not shown here). A
dynamical modeling of COVID-19 data demands a large
set of information about effective reproduction number
(infection rate may change non-monotonically), mobil-
ity through transportation network and detailed descrip-
tion of large number of compartments (variables). Our
proposition overcomes this drawback and depends only
on available multi-dimensional data set. We expect a
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FIG. 4: Prediction of COVID-19 data of 10 randomly

chosen locations from world data sets on COVID-19: (a)

Croatia: infection sharply increases (blue line) at the time of prediction (October 5 to October 26, shaded region).
Machine closely predicts (red circles) the trend (blue line) in the shaded region. A zoomed version of the shaded
region is presented in an immediate lower panel (second row). Almost similar scenarios observed for (b) Germany, (e)
Italy and (j) West Bengal. The decreasing trends of (d) Israel, (f) Rajasthan, (g) Telengana and (h) Tripura are also

well captured by the ESN. ESN also predicts the trend

in (i) Uttar Pradesh, but for a shorter time. Interestingly,

the machine prediction of the increasing and decreasing trend of infection in (b) Finland is closely matched with real

data.

higher resolution of data set will enable the ESN to cap-
ture the infection trend of a larger number of target lo-
cations more accurately and to enhance the duration of
prediction. Apart from the current prediction of targeted
locations, we confirm with a revised scheme that ESN can
truly capture the future trend of infection data at least
upto 10-14 days. We elaborate this scheme in the next
section.

V. FUTURE FORECASTING: A PROPOSITION

One may ask whether the proposed method can be
used to capture the future trend of infection. Till now,
we have predicted /traced the current data of selected lo-
cations by utilizing the data set of other locations (see the
scheme in Fig. 1). As we have claimed, usage of the large
pool of de-synchronized infection data series (all input
data sets are independent and uncorrelated) in the input
of ESN makes it easier to predict the trend of infection of
randomly selected locations. Against the same backdrop,
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FIG. 5: Generalized approach for future forecasting of
selected locations. This scheme enables to predict the
future trend of infection of the target locations for a du-
ration 7 time unit.

here we aim to estimate the future trend of infection of
the above mentioned target locations for a certain dura-
tion of time. Note that the initial growth rate for this
type of the infection is slow (follows power law [41]) com-
pared to the growth rate in later time. Thus we assume,
ignoring initial data (of targeted locations) for few days
will not affect the overall activities of ESN. Thus, we hy-
pothesize that short amount of time-shifted of the input
data can lead us to forecast the future trend (for short
term ~ 2 weeks) of infection of the target locations. To
do this we use the following steps:

Spatial and temopral Decomposition. We collect the
same data set from N locations. The data was saved
from t = 0 to t = t; We decompose the data set into
two parts: Input (M locations) and Target (N — M
locations,N >> (N — M)). We shift each of the inputs
with 7 (7 << ty) time unit, i.e., the input will be added
to the machine at ¢ = 7 (light red rectangular regime of
Fig. . As a consequence, we remove the initial trend
of target locations upto 7 time unit (blue rectangular
regime with cross mark). We will continue this learning
process until the entire target data is utilized for training
purpose, i.e., it will end at ¢ = t;. Therefore ¢ty — 7 input
data points will be used to train the machine such that
it can capture the M dimensional target data from t = 7
tot =tg.

Forecasting using testing procedure. Now we can use
the trained machine to forecast the target data from ¢
to ty + 7 (deep red regime) from the input data starting
ty—7+1toty (light red part in the right side). The green
brace below the light blue matrix represents the training

time and the red brace signifies the future forecasting of
the target locations.

A. Forecasting future trend from COVID-19 data

To validate our modified scheme, we have The raw data
[40], [https://covid19.who.int/] is preprocessed 465 days:
(from 22 January 2020 to 30 April October, 2021). We
decompose the entire set into two groups. Infected data
of 241 locations are fed into the ESN at the time of train-
ing. We target to forecast of the infection trend of 10
locations.  To forecast 14 days in future, we have dis-
carded initial 14 days from the targeted data. We have
trained the machine by utilizing the COVID-19 data from
22st January, 2021 to 17th April, 2020 (total 452 days)
to track the target data from February 5, 2020 to April
30, 2021 (total 438 days). After training is finished, we
forecast 14 days data of targeted locations from 1st may,
2021 to 14th may, 2021. Note that, we have data in
hand until 30th April, 2021. However we can forecast
for 14 days more from May 1 to May 14. The machine
generated data is marked with grey dots (Fig. |§[) for 100
realizations. In each realization, the reservoir weights are
randomly changed. The blue line is the average of these
100 realizations. Our machine generated prediction re-
flects that most of the states (Fig. 6 (f)-(j)) in India, the
daily infection will increase except Uttar Pradesh ( Fig.
6 i). The real data of each location in India is shown
with red markers(from May 1 to May 6, 2021) which are
closely matched with machine generated data. Trends in
Italy and Germany are are weakly captured (Fig. 6 c,e)
by the machine generated data where as for Israel slowly
increasing (d).  The upper bound of 7 by increasing
(or decreasing) the number of targeted locations is a real
question that demands further investigation in future.

VI. CONCLUSION

We have proposed a machine learning-based mecha-
nism for efficient prediction of COVID-19 infection. A
modified version of neural network (ESN) has been used
to predict new infections in randomly chosen locations.
Available data from a large number of locations are uti-
lized to train the machine such that it can map the in-
fection trend of other locations we called them as target
locations.

The proposed technique does not largely depend on
the intrinsic parameters of the ESN. In the literature,
there exist several phenomenological models [42H44]
for predicting the trend of infection. However, these
models have limitations for prediction due to intrinsic
uncertainties in system parameters. For instance, the
well known Gompertz function cannot capture the trend
of the second wave [45H47] of infection whereas it can
efficiently predict the initial daily infection. Also,
suitable choices of parameters of Gompertz function
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FIG. 6: Forecasting future trend of infection of 10 selected locations from May 1, 2021 to May 14, 2021. The grey
patch in each figure is the machine generated data for 100 realizations. The blue line is the average of each grey
patch. The red markers are the real data for the period 1st May, to 6th May, 2021.

immediate before the prediction are necessary (please
see the appendix Sec. A for detailed investigation
through Gompertz function). In our model-free
machine learning scheme this restriction is relaxed as
ESN can successfully trace the second wave of specific
locations (See Fig. 4 (b-d) and Fig. 6). Forecasting is
really a challenging task, however, we have proposed a
second scheme using a data shifting technique during
the training process that shows promising results of
future forecasting. We expect our proposition might
be useful for diverse set of spatiotemporal data ranging
from physiological to multivariate climate data. In a
same manner, we can use other types of recurrent neural
networks for prediction of infection trend of certain
locations that we intend to try in future.

Codes to reproduce the results presented here are
freely accessible at Reservoir-computing-on-epidemic-
spreading,.
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VII. APPENDIX
A. Prediction through Gompertz Curve

In literature, there are so many models and mecha-
nism available to data fitting which enables us to esti-
mate suitable parameters for short term forecasts as well
as its uncertainty in forecasting. For instance, general-
ized Richard model, logistic growth model, sub-epidemic
wave model [42,[43] flexible growth model curve[44] and
Gompertz curve [46 47] have been thoroughly used for
forecasting infection data. We use the following Gom-
pertz function [45] for capturing the daily infection (Z(¢))

at K
I(t) = aKe ™ ()¢ (1n(ﬁo)e_“t), (7)

where the parameter K is the saturating value of the in-
fected cases, Ny is the initial infection, and a represents
the decreasing trend of the initial exponential growth.
Now we estimate the parameters a and K to predict the
infection pattern from 5th October to 26th October, 2020
(22 days). Here we take daily infection data of 10 coun-
tries/regions for 4 weeks from 8th Sept to October 5,
2020 and fit it with Gompertz curve (GC), to obtain
the best fitted parameters. We can see that Gompertz
curve is able to provide good prediction for certain loca-
tions (Fig. [7} Israel, Uttarpradesh, Telengana, Tripura,
and Finalnd) and fails to predict the infection trend in


https://github.com/subrata-chitta/Reservoir-computing-on-epidemic-spreading
https://github.com/subrata-chitta/Reservoir-computing-on-epidemic-spreading

Croatia, Germany, West Bengal, Rajasthan, and Italy.

However, machine generated data performs well for most
of the cases (see Fig. 4 for comparison).

[1] M. Perc, N. Gorisek Miksié¢, M. Slavinec, and A. Stozer,
Frontiers in Physics 8, 127 (2020).

[2] G. Grasselli, A. Pesenti, and M. Cecconi, Jama 323,
1545 (2020).

[3] F. Petropoulos and S. Makridakis, PloS One 15,
0231236 (2020).

[4] C. Anastassopoulou, L. Russo, A. Tsakris, and C. Siet-
tos, PloS One 15, €0230405 (2020).

[5] A. J. Kucharski, T. W. Russell, C. Diamond, Y. Liu,
J. Edmunds, S. Funk, R. M. Eggo, F. Sun, M. Jit, J. D.
Munday, et al., The Lancet Infectious Diseases 20, 553
(2020).

[6] A. Vespignani, H. Tian, C. Dye, J. O. Lloyd-Smith, R. M.
Eggo, M. Shrestha, S. V. Scarpino, B. Gutierrez, M. U.
Kraemer, J. Wu, et al., Nature Reviews Physics 2, 279
(2020).

[7] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. L.
Jarvis, T. W. Russell, J. D. Munday, A. J. Kucharski,
W. J. Edmunds, F. Sun, et al., The Lancet Global Health
8, 488 (2020).

[8] T. Colbourn, The Lancet Public Health 5, 236 (2020).
[9] S. Ghosh, A. Senapati, J. Chattopadhyay, C. Hens, and
D. Ghosh, arXiv preprint arXiv:2010.07649 (2020).

[10] D. L. Heymann and N. Shindo, The Lancet 395, 542

(2020).

[11] J. Tsai and M. Wilson, The Lancet Public Health 5, €186
(2020).

[12] A. A. AlMomani and E. Bollt,
arXiv:2004.08897 (2020).

[13] L. Gallo, M. Frasca, V. Latora,
preprint arXiv:2012.00443 (2020).

[14] S. Lalmuanawma, J. Hussain, and L. Chhakchhuak,
Chaos, Solitons & Fractals 139, 110059 (2020).

[15] A. Senapati, S. Rana, T. Das, and J. Chattopadhyay,
Journal of Theoretical Biology 523, 110711 (2021).

[16] Z. Yang, Z. Zeng, K. Wang, S.-S. Wong, W. Liang,
M. Zanin, P. Liu, X. Cao, Z. Gao, Z. Mai, et al., Journal
of Thoracic Disease 12, 165 (2020).

[17] Z. Li, Y. Zheng, J. Xin, and G. Zhou, arXiv preprint
arXiv:2007.10929 (2020).

[18] A. Fokas, N. Dikaios, and G. Kastis, Journal of the Royal
Society Interface 17, 20200494 (2020).

[19] L. Yan, H.-T. Zhang, J. Goncalves, Y. Xiao, M. Wang,
Y. Guo, C. Sun, X. Tang, L. Jing, M. Zhang, et al.,
Nature Machine Intelligence 2, 283 (2020).

[20] M. H. D. M. Ribeiro, R. G. da Silva, V. C. Mariani, and
L. dos Santos Coelho, Chaos, Solitons & Fractals 135,
109853 (2020).

[21] S. Singh, K. Parmar, S. Jitendra Singh, J. Kaur,
S. Peshoria, and J. Kumar, Chaos, Solitons & Fractals
139, 110086 (2020).

[22] T. Chakraborty and I. Ghosh, Chaos, Solitons & Fractals
135, 109850 (2020).

[23] M. Wieczorek, J. Sitka, and M. Wozniak, Chaos, Solitons
& Fractals 140, 110203 (2020).

arXiv preprint

and G. Russo, arXiv

[24] A. Di Castelnuovo, M. Bonaccio, S. Costanzo, A. Gi-
alluisi, A. Antinori, N. Berselli, L. Blandi, R. Bruno,
R. Cauda, G. Guaraldi, et al., Nutrition, Metabolism and
Cardiovascular Diseases 30, 1899 (2020).

[25] H. Jaeger and H. Haas, Science 304, 78 (2004).

[26] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Phys-
ical Review Letters 120, 024102 (2018).

[27] R. S. Zimmermann and U. Parlitz, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 28, 043118 (2018).

[28] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott,
Chaos: An Interdisciplinary Journal of Nonlinear Science
27, 121102 (2017).

[29] Z. Lu, B. R. Hunt, and E. Ott, Chaos: An Interdisci-
plinary Journal of Nonlinear Science 28, 061104 (2018).

[30] X. Lin, Z. Yang, and Y. Song, Expert Systems with
Applications 36, 7313 (2009).

[31] X. Hinaut and P. F. Dominey, PloS One 8, €52946 (2013).

[32] D. Verstraeten, B. Schrauwen, D. Stroobandt, and
J. Van Campenhout, Information Processing Letters 95,
521 (2005).

[33] T. Weng, H. Yang, C. Gu, J. Zhang,
Physical Review E 99, 042203 (2019).

[34] T. Lymburn, D. M. Walker, M. Small, and T. Jingling,
Chaos: An Interdisciplinary Journal of Nonlinear Science
29, 093133 (2019).

[35] X. Chen, T. Weng, H. Yang, C. Gu, J. Zhang, and
M. Small, Physical Review E 102, 033314 (2020).

[36] A.Panday, W.S. Lee, S. Dutta, and S. Jalan, Chaos: An
Interdisciplinary Journal of Nonlinear Science 31, 031106
(2021).

[37] S. Saha, A. Mishra, S. Ghosh, S. K. Dana, and C. Hens,
Physical Review Research 2, 033338 (2020).

[38] J. Hilton and M. J. Keeling, PLoS Computational Biol-
ogy 16, 1 (2020).

[39] M. Castro, S. Ares, J. A. Cuesta, and S. Manrubia,
Proceedings of the National Academy of Sciences 117,
26190 (2020).

[40] B. Xu, M. U. Kraemer, B. Gutierrez, S. Mekaru, K. Se-
walk, A. Loskill, L. Wang, E. Cohn, S. Hill, A. Zarebski,
et al., The Lancet Infectious Diseases 20, 534 (2020).

[41] B. F. Maier and D. Brockmann, Science 368, 742 (2020).

[42] A. Smirnova and G. Chowell, Infectious Disease Mod-
elling 2, 268 (2017).

[43] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg,
J. M. Hyman, P. Yan, and G. Chowell, Journal of clinical
medicine 9, 596 (2020).

[44] C. F. Tovissodé, B. E. Lokonon,
Plos One 15, €0240578 (2020).

[45] M. Catala, S. Alonso, E. Alvarez-Lacalle, D. Lépez, P.-J.
Cardona, and C. Prats, PLoS Computational Biology
16, 1008431 (2020).

[46] A. Berihuete, M. Sénchez-Sénchez,
Llorens, Mathematics 9, 228 (2021).

[47] A. Ohnishi, Y. Namekawa, and T. Fukui, Progress
of Theoretical and Experimental Physics 2020, 123J01
(2020).

and M. Small,

and R. Glele Kakai,

and A. Sudrez-



10

@, 5 ®lozez . © 3 @ 4y
Z2.H .. data |} i | ¢ ¢ data .l | o data !
o fitted cjirve e fitted urve 7 5 Isreal} — fitted qurve  J
+ predicted T +— predicted ; " +—s predicted '-' I
=~ 1.0 Croatia German:y N3 o s 1.0{ 'taly -
9‘:// ; o fitted cufve .'-. : ’ L
0.04 : 3 ; 1-: -pmmn? K\ | wn—-ﬂgﬁgii_-— |
Y O T Y R S
L o0 O @ O O O O & O O
& o ) o % s
03] (i) )
e3 | . e3 | 6le2 sle3 . e3
o < data E 2'5'3% oo d&‘a . ﬁ:iata ! oo e:(ata > < data E F,
2.4 .. fitted cfirve I = ﬂtfe‘.’ curve e fitted curve [ o fitted curve [ 4.0{ +— fitted furve rd
2.0 oy pr:edncted L 4 e predicted 5 + predicted +— predicted rd
N : . N ' N ' 36 : -
Al ; 1.5 \ - 2 _ 3 , 3.9) f j
16l, | 10 flangal;'!i . Tripura . Uttar Prad%ash ' 2.8-@,
< < * & & 3 < X X X X < <X
KT £ 0O ® FF R FF K F
& 9 o % g 5 5 T o e o 9 0

FIG. 7: Forecasting through the Gompertz Curve (GC) in 10 randomly chosen regions. 4 weeks data are used to
standardize the intrinsic parameters of Gompertz function. 22 days were forecast from October 5, to October 26,

2020.



