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We theoretically calculate the growth rate of the metal pad roll instability in cylindrically
shaped liquid metal batteries. Our model extends that of Herreman et al. (2019) and includes
a precise description of dissipation. Theoretical growth rates are in quantitive agreement with
the simulations of Weber et al. (2017b) and Horstmann et al. (2018). Our model suggests
that the metal pad roll instability in batteries has a distinct feature: the Lorentz force can be
destabilizing in one fluid layer and stabilizing in another and this may result in a very weak
instability. The existence of such a weak instability region explains why different types of
waves can be selected as most unstable modes. We use our theory to estimate the domain of
stability of different types of large scale, shallow liquid metal batteries.

Key words:Magnetohydrodynamics (MHD), gravity waves

1. Introduction
The metal pad roll instability is a well known phenomenon that causes undesirable wave
motion on the cryolite-aluminium interface inside Hall-Héroult reduction cells. Since Sele
(1977), we know that this wave motion is due to a weak magnetohydrodynamic coupling
between the ambient magnetic field and the electrolysis current that is being deflected by the
waves. The review of Gerbeau et al. (2006) contains a rich bibliography on this subject.
Liquid metal batteries are structurally similar to reduction cells but have three layers of

stacked fluids (light metal, molten salt, heavy alloy) rather than two (cryolite, aluminium).
Existing prototypes of liquid metal batteries (Bradwell et al. 2012; Wang et al. 2014) are
certainly not yet as large as industrial reduction cells, but if they would be made as large
in the future, then it is certain that metal pad roll instability would also be present in these
batteries and affect their efficiency. The first article to discuss metal pad roll instability inside
liquid metal batteries is Zikanov (2015), who extends the solid-slab model of Davidson
& Lindsay (1998) to the three layer case. This suggested that the physical mechanism

† Email address for correspondence: wietze.herreman@universite-paris-saclay.fr
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causing metal pad instability in batteries is essentially the same one as in reduction cells.
Shallow, magnetohydrodynamical models give a more precise description of the metal pad
roll instability and were very popular in reduction cell context (see Bojarevics & Romerio
(1994); Bojarevics (1998); Davidson & Lindsay (1998); Zikanov et al. (2000); Lukyanov
et al. (2001); Sun et al. (2004); Zikanov et al. (2004)). This shallow approach has inspired
Bojarevics & Tucs (2017); Tucs et al. (2018a,b); Molokov (2018) to propose three layer
extensions, adapted to batteries. All these models suggest that the type of waveform that is
most unstable will depend on the type of battery, the materials and also the geometry of the
cell. As shown by Tucs et al. (2018b), we can use these shallow models to estimate stability
thresholds of future, large scale, shallow liquid metal batteries.
In parallel to the shallow approach, several groups have done direct numerical simulations

(DNS) of metal pad roll instability inmuch smaller liquidmetal batteries that are non-shallow
(Weber et al. 2017b,a; Horstmann et al. 2018; Xiang & Zikanov 2019). This alternative
numerical approach relies on much less assumptions but is computationally much more
demanding. Unlike in the shallow approach, small scale motion is not filtered out and hence
it needs to be resolved. In practice, this means that, without turbulence model, DNS is limited
to moderate Reynolds number flows 𝑅𝑒 < 104, in order to have a not too turbulent flow. With
realistic viscosities that are of order 10−6m2 s−1 or lower, a typical flow of just 1 cm s−2,
we already reach this typical DNS limit of 𝑅𝑒 ≈ 104 in small, centimeter scale cells. This
explains why all DNS of metal pad roll instability inside liquid metal batteries have been
done in small, centimeter scale cells. In such small batteries, instability requires much larger
ambient magnetic field or electrical currents and viscous and magnetic dissipation are not
negligible. In Weber et al. (2017b,a), metal pad roll instability is reproduced numerically in
a small Mg| |Sb liquid metal battery. Many physical parameters (current, imposed magnetic
field, viscosities, densities, fluid layer heights, ...) were varied to show how these parameters
affect the instability. Horstmann et al. (2018) continued this work in a more fundamental
study. It is shown that the ratio of the density jumps (𝜌3 − 𝜌2)/(𝜌2 − 𝜌1) is an important
parameter in selecting the most unstable wave-mode. If this number is close to 1, then
both interfaces will move with similar amplitudes and hydrodynamically, they are strongly
coupled. When on the contrary, the ratio is very different from 1, the interfaces are decoupled
and the most unstable wave will mainly deform the interface with the lowest density jump.
Next to the metal pad roll instability, it is also shown that a non-oscillatory, axisymmetric
bulge instability can also appear though transiently. Finally, Xiang & Zikanov (2019) have
also done a numerical study on metal pad roll in cubical cells. Different types of wave motion
are again observed and the importance of the parameter (𝜌3−𝜌2)/(𝜌2−𝜌1) in selecting these
different modes is acknowledged. All combined, DNS have provided valuable information on
the metal pad roll instability, but a deeper theoretical understanding of what is going on inside
these smaller cells is certainly desirable. The problem is that none of the existing shallow
stability models are really adapted to describe instability in these small and non-shallow
cells.
The absence of theoretical stability models for small cells, that hence can be compared

with DNS, is precisely what motivated Herreman et al. (2019) (referred to as H19 hereafter)
to derive a new type of stability model. Rather than using a shallow approximation, a
perturbative expansion on gravity waves is done to calculate the small growth rate of rotating
gravity waves. Using solvability conditions, it is possible to calculate how rotating gravity
waves are slightly destabilized by the Lorentz force (Sele-mechanism) and how they are
slightly stabilized by viscosity. The stability theory of H19 is presently limited to cylindrical
cells with two fluid layers and results in explicit formula for the growth rates. For the small
cylindrical reduction cell studied by Steiner (2009), it was shown that these theoretical
growth rates are in quantitative agreement with measurements from DNS. The theoretical
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(a) (b)

Figure 1: Sketch of the base state under study. (a) Three liquid layers with different
electrical conductivity, density and kinematic viscosity are stably stacked on top of each
other due to gravity. A homogenous current density 𝐽 runs vertically through the layers
and there is an ambient and uniform vertical magnetic field 𝐵𝑧 . (b) Our three fluid
domainsV1,V2,V3 have respective heights 𝐻1, 𝐻2, 𝐻3 and radius 𝑅. The solid
boundaries are referred to as Σ1,Σ2,Σ3 and the interfaces as S12 and S23.

expressions for the viscous damping rates of the waves were independently validated in
dedicated hydrodynamical experiments (Horstmann & Wylega 2019). All this suggest that
this new type of stability theory has predictive power. In Nore et al. (2021), we have used
this theory to advocate why metal pad roll instability should be realizable in a small room-
temperature experimental set-up that places a layer of gallium above a layer of mercury. Such
an experiment would be interesting as there are very few devices that can reproduce this
instability in the lab (Pedchenko et al. 2009, 2016). Nore et al. (2021) also found excellent
agreement between theory and DNS and we must note that these simulations are amongst
the most challenging ones that have been ever done on the metal pad roll instability.
In this article we continue our program on the theoretical description of metal pad roll

instability. We adapt the stability model that H19 designed for two-layer systems to the three-
layer, battery case. This theory roughly follows the same steps as in H19 and is explained in
§2. In §3, we apply the theory to different LMBs set-ups. We study theMg| |Sb cells ofWeber
et al. (2017b,a), the cells of Horstmann et al. (2018) and in both sections, we compare our
theory to some new direct numerical simulations, done with two different multiphase MHD
solvers, OpenFOAM and SFEMaNS (see Guermond et al. (2007, 2009); Nore et al. (2016);
Cappanera et al. (2018) for detailed information on the numerical methods). Tucs et al.
(2018a) have studied metal pad roll in a square Na| |Bi cell and we have found it interesting
to apply our theory to a cylindrical analogue of this cell. Finally, we show that our theory
can be used to estimate the stability regions of different liquid metal batteries, with different
geometry and materials. Inspired by Tucs et al. (2018b), we compute critical magnetic fields
𝐵𝑧,𝑐 for the onset of instability in a hypothetical, large and shallow 105A cell. We also map
the domain of stability in a size of cell vs. current density chart. Such charts can serve as a
first order estimate to know where future, large scale LMBs would be stable with respect to
metal pad roll instability.
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2. Metal pad roll stability theory
2.1. Base state

We model metal pad roll (MPR) instability in a three layer, cylindrical liquid metal battery
(LMB) and use the notations of figure 1-(a) that shows the base state. The cylinder has radius
𝑅 and the height of the three layers is 𝐻𝑖 with 𝑖 = 1, 2, 3. We use cylindrical coordinates
(𝑟, 𝜃, 𝑧) and basis (𝒆𝒓 , 𝒆𝜽 , 𝒆𝒛). The electrical conductivity, the density and the kinematic
viscosity are denoted 𝜎𝑖 , 𝜌𝑖 , 𝜈𝑖 in layers 𝑖 = 1, 2, 3. We will denote density differences

Δ𝜌12 = 𝜌2 − 𝜌1 , Δ𝜌23 = 𝜌3 − 𝜌2 (2.1)

Standard gravity is 𝑔 and we ignore surface tension in this study. We suppose a base state
with all fluids at rest separated by planar interfaces at 𝑧 = 0 (1|2 interface) and 𝑧 = −𝐻2
(2|3) interface. The base state pressure 𝑃𝑖 is hydrostatic, 𝜕𝑧𝑃𝑖 = −𝜌𝑖𝑔 and continuous at the
interfaces, so (𝑃1, 𝑃2, 𝑃3) = 𝑃0 + (−𝜌1𝑔𝑧,−𝜌2𝑔𝑧,−𝜌3𝑔(𝑧 +𝐻2) + 𝜌2𝑔𝐻2) with 𝑃0 denoting
an arbitrary ambient pressure. We imagine solid electrodes connecting to the liquids at
𝑧 = 𝐻1 and 𝑧 = −𝐻2 − 𝐻3 with an electrical conductivity that is supposed significantly
smaller compared to that of the liquid metals in zones 1 and 3. A perfectly homogenous
electrical current with density 𝑱 = 𝐽𝒆𝑧 runs vertically through the three layers. The base-
state electrical potential Φ𝑖 is defined by 𝐽 = −𝜎𝑖𝜕𝑧Φ𝑖 and is continuous at the interfaces.
This yields (Φ1,Φ2,Φ3) = Φ0 + 𝐽 (−𝜎−1

1 𝑧,−𝜎−1
2 𝑧,−𝜎−1

3 (𝑧 + 𝐻2) + 𝜎−1
2 𝐻2) inside the cell,

with Φ0 arbitrary. A uniform vertical magnetic field 𝑩𝑒 = 𝐵𝑧𝒆𝑧 is externally applied to
the cell, the total magnetic field is 𝑩 = (𝜇0𝐽𝑟/2)𝒆𝜃 + 𝐵𝑧𝒆𝑧 . In the following we refer to
the unperturbed fluid volumes as V1,V2,V3. The boundaries of these fluid domains are
𝛿V1, 𝛿V2, 𝛿V3 and include the solid walls Σ1,Σ2,Σ3 and the interfaces 𝑧 = 0 and 𝑧 = −𝐻2
are S12 and S23.

2.2. Linear perturbation problem
We are interested in the linear stability of the previously defined base state. We denote
(𝒖𝒊 , 𝑝𝑖 , 𝒃𝒊 , 𝒋𝒊 , 𝜑𝑖), the linear perturbations of flow, pressure, magnetic field, current density
and electrical potential. The linearised magnetohydrodynamical equations for the perturba-
tions are

𝜌𝑖𝜕𝑡𝒖𝒊 + ∇𝑝𝑖 = 𝑱 × 𝒃𝒊 + 𝒋𝒊 × 𝑩 + 𝜌𝑖𝜈𝑖𝚫𝒖𝑖 (2.2a)
∇ · 𝒖𝑖 = 0 (2.2b)

𝒋 𝑖 = 𝜎𝑖 (−∇𝜑𝑖 + 𝒖𝑖 × 𝑩) (2.2c)
∇ · 𝒋𝒊 = 0 (2.2d)

The magnetic field perturbation 𝒃𝑖 further satisfies ∇ × 𝒃𝑖 = 𝜇0 𝒋 𝑖 and ∇ · 𝒃𝑖 = 0. It is
not of much interest to calculate this field, since the term 𝑱 × 𝒃𝒊 is not destabilising in the
perturbative limit that we will consider here (see H19). The solid wall Σ of the cylinder is
impermeable

𝒖𝑖 · 𝒏𝑖 = 0|Σ. (2.3)
We denote 𝒏𝑖 the unit normal vector. In viscous fluids, tangential flow also vanishes at
the boundary 𝒏𝑖 × 𝒖𝑖 |Σ = 0. We locate the deformed interfaces at 𝑧 = 𝜂12(𝑟, 𝜃, 𝑡) and
𝑧 = 𝜂23(𝑟, 𝜃, 𝑡). The linearised kinematic and dynamic boundary conditions are

𝜕𝑡𝜂12 = 𝑢1,𝑧 |𝑧=0 = 𝑢2,𝑧 |𝑧=0 (2.4a)
𝜕𝑡𝜂23 = 𝑢2,𝑧 |𝑧=−𝐻2 = 𝑢3,𝑧 |𝑧=−𝐻2 (2.4b)

Δ𝜌12𝑔𝜂12 = 𝑝2 |𝑧=0 − 𝑝1 |𝑧=0 (2.4c)
Δ𝜌23𝑔𝜂23 = 𝑝3 |𝑧=−𝐻2 − 𝑝2 |𝑧=−𝐻2 (2.4d)
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In viscous fluids, tangential flow and tangential viscous constraint are continuous. Electrical
boundary conditions on the solid walls are

𝒋 𝑖 .𝒏𝑖 = 0|Σ. (2.5)

This relation is exact on the radial sidewall and a good approximation when the solid
electrodes that we imagine above layer 1 and under layer 3, have an electrical conductivity
that is significantly lower than 𝜎1 and 𝜎3. At the interfaces we express that the total
normal electrical current (𝑱 + 𝒋) · 𝒏 and total electrical potentiel Φ + 𝜑 are continuous.
After linearisation, this yields :

𝑗2,𝑧 |𝑧=0 − 𝑗1,𝑧 |𝑧=0 = 𝑗3,𝑧 |𝑧=−𝐻2 − 𝑗2,𝑧 |𝑧=−𝐻2 = 0 (2.6a)
𝜑2 |𝑧=0 − 𝜑1 |𝑧=0 = 𝐽 (𝜎−1

2 − 𝜎−1
1 )𝜂12 (2.6b)

𝜑3 |𝑧=−𝐻2 − 𝜑2 |𝑧=−𝐻2 = 𝐽 (𝜎−1
3 − 𝜎−1

2 )𝜂23 (2.6c)

Surface elevations 𝜂12, 𝜂23 cause jumps in the electrical potential perturbation 𝜑 if the
conductivity of the layers is different. This physical ingredient really is essential for MPR
instability to occur.
The linear stability problem is now entirely defined. We may search solutions in which

arbitrary field components 𝑓 grow as 𝑓 = 𝑓̂ 𝑒𝑠𝑡 . In the following, hatted variables, 𝑓̂ always
represent the spatial structure of a field, 𝑠 ∈ C is a complex growth rate. Instability requires
Re(𝑠) > 0 .

2.3. Instability mechanism in three-layer systems
Before we zoom into the technical calculation of the growth rate of the waves, let us have
a look at the physics of the instability mechanism. In figure 2 we illustrate three typical
situations that can occur in three layer systems. Imagine to start with, a gravity wave that
rotates as indicated by the black arrow and has instantaneous interface deformation of three
typical types. Many liquid metal batteries have much larger density jumps on the bottom
interface, Δ𝜌12 � Δ𝜌23 and the result is that the waveform will practically leave the lower
interface undeformed, as in case (a). This case is called the decoupled case byHorstmann et al.
(2018). Some batteries have Δ𝜌12 ≈ Δ𝜌23 and then we can have either (b) anti-symmetrically
deformed interfaces or (c) symmetrically deformed interfaces.
In the top row of figure 2, we suggest the instantaneous flow, 𝒖 using green arrows, together

with the spatial variation of total electrical current, 𝑱 + 𝒋 using red arrows. To understand
the direction of 𝒖 just imagine how material needs to be displaced for the wave to rotate in
the direction of the black arrow. To understand the structure of 𝑱 + 𝒋 , just take into account
that the electrolyte is a bad conductor and that the current will be intensified (thicker arrows)
near the narrower parts of the electrolyte.
In the bottom row of figure 2, we suggest the typical loops that are followed by current

deviation 𝒋 . In cases (a) and (b), we expect a single 𝒋-loop but in case (c), we will rather
have a pair of 𝒋-loops to be able to create a small horizontal current deviation defect
within the inclined electrolyte layer. Having these loops in mind, we can now draw the
instantaneous direction of Lorentz force, 𝒋 × 𝑩𝑒 (light green arrows). If the Lorentz force is
to be destabilizing, it has to align more or less with the instantaneous flow as 𝒖 · ( 𝒋 ×𝑩𝑒) > 0
indeed indicates that power is being injected into the flow. This power injection apparently
is very different in cases (a), (b) and (c).
Let us discuss case (a) first. The figure suggests that 𝒖 indeed aligns with 𝒋 × 𝑩𝑒 in the

top layer, so power is indeed injected into the wave in this layer. As the same figure can be
drawn at any rotated position, we can expect a permanent injection of power and hence an
amplification. In this battery type with Δ𝜌12 � Δ𝜌23, the bottom layer is almost at rest and

Page 5 of 29

Cambridge University Press

Journal of Fluid Mechanics



6

(a) (b) (c)

Figure 2: Metal pad roll instability mechanism in batteries, in three characteristic
situations. Top row shows interface deformations, instantaneous flows for a rotating wave
and current deflections. The bottom row shows perturbed current loops and compares the
direction of Lorentz force 𝒋 × 𝑩𝑒 to that of 𝒖. In many LMBs, Δ𝜌12 � Δ𝜌23 and we
expect a waveform as in (a) where the bottom interface remains almost flat. When
Δ𝜌23 ≈ Δ𝜌12 other waveforms are possible, anti-symmetrical waveforms (b) or

symmetrical waveforms (c).

hence, with 𝒖3 ≈ 0, this layer will not be receiving much power from the Lorentz force. The
result is that metal pad roll will be very much as in a two-layer system, a feature that is already
known since the simulations of Weber et al. (2017b,a) for Mg| |Sb batteries. Notice that the
direction of rotation of the wave is crucial for amplification. If we invert the rotation direction,
𝒖 changes sign and hence anti-aligns with 𝒋 × 𝑩𝑒 so this wave would be electromagnetically
damped.
When Δ𝜌12 ≈ Δ𝜌23 other waveforms are possible as we know from Horstmann et al.

(2018), but power injection may be rather different in this situation. On the typical 𝒋-loops,
it is easy to draw the instantaneous direction of the Lorentz force 𝒋 × 𝑩𝑒. Interestingly,
it seems that 𝒖 · ( 𝒋 × 𝑩𝑒) > 0 in the top layer, but 𝒖 · ( 𝒋 × 𝑩𝑒) < 0 in the bottom layer.
Energy is injected into this rotating wave in the top layer, but withdrawn from the wave in
the bottom layer. This situation of opposing power transfers is a particularity of the metal
pad roll instability with three layers and these symmetrical or anti-symmetrical waveforms.
It seems to suggest that, with Δ𝜌12 ≈ Δ𝜌23, we can end up with a very weak metal pad roll
instability. Below, we will show more formally that this is indeed the case.
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2.4. Perturbative solution
2.4.1. Main idea
Let us now present our formal calculation of the growth rate of the instability. When both
the Lorentz and viscous forces are small in comparison to inertia and pressure forces, we
can model their effect perturbatively. At lowest order, we start by finding free-gravity waves
and the accompanying electrical current and potential perturbations. Next we calculate the
complex growth rate as :

𝑠 = i𝜔 + 𝜆 + i𝛿︸︷︷︸
small shift

(2.7)

The leading order value of the complex growth rate 𝑠 is set by 𝑖𝜔 where 𝜔 ∈ R is the
frequency of free inviscid gravity waves. Small viscosity and small Lorentz forces cause a
complex shift in 𝑠, that we may further split in real and imaginary parts as 𝜆 + 𝑖𝛿. The term
i𝛿 is not very interesting as it corresponds to a small, real frequency shift. As in H19, it is
partly caused by viscosity and partly by the Lorentz-force due to the azimuthal or horizontal
magnetic field 𝐵𝜃 = 𝜇0𝐽𝑟/2. In this article, we will not calculate this frequency shift 𝛿. Our
focus will entirely be on the real growth rate 𝜆 as this is the term that characterises the growth
or decay of a wave. We evaluate 𝜆 as the sum of three independent terms:

𝜆 = 𝜆𝑣 + 𝜆𝑣𝑖𝑠𝑐 + 𝜆𝑣𝑣 (2.8)

The term 𝜆𝑣 ∼ 𝐽𝐵𝑧 is the only one that can be positive and it is the one that relates to the
Sele-instability mechanism, discussed in the previous section. The term 𝜆𝑣𝑖𝑠𝑐 < 0 is the
viscous damping of the wave. This damping is due to dissipation in the thin Stokes layers
that exist at the solid boundaries and near the interfaces. The term 𝜆𝑣𝑣 < 0 is the magnetic
damping due to induction in the top and bottom metals. Proportional to ∼ 𝐵2𝑧 it is very small
for low imposed magnetic fields. In the following sections we calculate all three terms 𝜆𝑣 ,
𝜆𝑣𝑖𝑠𝑐 and 𝜆𝑣𝑣 separately.

2.4.2. Hydrodynamic problem at leading order: gravity waves
The perturbative approach starts with a characterisation of the leading order hydrodynamical
wave problem. Without Lorentz and viscous forces, we need to solve :

𝜌𝑖𝜕𝑡𝒖𝒊 + ∇𝑝𝑖 = 0, , ∇ · 𝒖𝑖 = 0 (2.9)

with the boundary conditions (2.4). This three-layer wave problem was already studied in
detail by Horstmann et al. (2018). Here we use slightly different notations to remain as close
as possible to the presentation of H19 that we wish to extend. Our solution is

[𝒖𝑖 , 𝑝𝑖 , 𝜂12, 𝜂23] = [𝒖̂𝑖 , 𝑝𝑖 , 𝜂12, 𝜂23]𝑒i𝜔𝑡 (2.10)

with a flow that is potential: 𝒖̂𝑖 = ∇𝜙𝑖 and ∇2𝜙𝑖 = 0. The hydrodynamic potentials and
interface shapes of the waves are defined by

𝜙1 =
𝜔𝑅

𝑘
𝑎
cosh(𝑘 (𝑧 − 𝐻1))
sinh(𝑘𝐻1)

𝐽𝑚(𝑘𝑟)𝑒i𝑚𝜃 (2.11a)

𝜙2 =
𝜔𝑅

𝑘

(
𝑏
cosh(𝑘𝑧)
sinh(𝑘𝐻2)

− 𝑎
cosh(𝑘 (𝑧 + 𝐻2))
sinh(𝑘𝐻2)

)
𝐽𝑚(𝑘𝑟)𝑒i𝑚𝜃 (2.11b)

𝜙3 = −𝜔𝑅

𝑘
𝑏
cosh(𝑘 (𝑧 + 𝐻2 + 𝐻3))

sinh(𝑘𝐻3)
𝐽𝑚(𝑘𝑟)𝑒i𝑚𝜃 (2.11c)
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and

𝜂12 = 𝑅 i𝑎𝐽𝑚(𝑘𝑟)𝑒i𝑚𝜃 (2.11d)
𝜂23 = 𝑅 i𝑏𝐽𝑚(𝑘𝑟)𝑒i𝑚𝜃 . (2.11e)

Pressure relates to hydrodynamic potential by 𝑝𝑖 = −i𝜔𝜌𝑖𝜙𝑖 . In these formulas 𝐽𝑚 represents
a Bessel function of the first kind, 𝑚 ∈ N the azimuthal wavenumber that can be considered
positive. 𝑘 is the radial wavenumber that takes the discrete values 𝑘 = 𝜅𝑚𝑛/𝑅 with 𝜅𝑚𝑛 the
n-th zero of 𝐽 ′𝑚(𝜅𝑚𝑛) = 0. The solution (2.11) has impermeability on the solid walls built
in and also the kinematic boundary conditions are already satisfied on the interfaces. The
non-dimensional amplitudes 𝑎, 𝑏 are still undetermined but they are non-trivially related by
the algebraical system that is found by expressing the dynamic boundary conditions (2.4c)
and (2.4d): ©­­­­«

𝜔212
𝜔2

− 1 𝜌2

𝜌12 sinh(𝑘𝐻2)
𝜌2

𝜌23 sinh(𝑘𝐻2)
𝜔223
𝜔2

− 1

ª®®®®¬
(
𝑎

𝑏

)
=

(
0
0

)
(2.12)

Here and further, we note

𝜌12 =
𝜌1

tanh(𝑘𝐻1)
+ 𝜌2

tanh(𝑘𝐻2)
, 𝜌23 =

𝜌2

tanh(𝑘𝐻2)
+ 𝜌3

tanh(𝑘𝐻3)
(2.13a)

𝜔212 =
Δ𝜌12𝑔𝑘

𝜌12
, 𝜔223 =

Δ𝜌23𝑔𝑘

𝜌23
(2.13b)

The frequencies 𝜔12 and 𝜔23 are the wave-frequencies of the respective 2-layer systems.
Existence of non-trivial solutions of (2.12) requires that[

1
𝜔2

− 1
𝜔212

] [
1
𝜔2

− 1
𝜔223

]
=

𝜌22

𝜌12𝜌23 sinh2(𝑘𝐻2)𝜔212𝜔
2
23

(2.14)

from which we can find that there are 2 possible values of 𝜔2:

𝜔2± =
©­­«
1
2

(
1
𝜔212

+ 1
𝜔223

)
∓ 1
2

√√√(
1
𝜔212

− 1
𝜔223

)2
+ 4
𝜔212𝜔

2
23

𝜌22
𝜌12𝜌23

1
sinh2(𝑘𝐻2)

ª®®¬
−1

(2.15)

The sign ± chooses between the rapid frequency (+)-branch and the slow frequency (-)-
branch and here we use the same notation as in Horstmann et al. (2018). Returning these two
possible values of 𝜔2 to the original system (2.12), we find unique amplitude ratios 𝜖 = 𝑏/𝑎
for both the slow and rapid branches:

𝜖± = 𝐶 ±
√︁
𝐶2 + 𝐷 (2.16a)

with

𝐶 =
1
2

(
𝜌12
𝜌2

− Δ𝜌12

Δ𝜌23

𝜌23
𝜌2

)
sinh(𝑘𝐻2) , 𝐷 =

Δ𝜌12

Δ𝜌23
(2.16b)

Fast waves always have 𝜖+ > 0: both interfaces deform in phase, have their maxima and
minima at the same azimuthal angle 𝜃. This wave-form is referred to as symmetrical in
Horstmann et al. (2018). Slow waves always have 𝜖− < 0: both interfaces deform in phase
opposition. Throughs of the upper 1|2 interface will be right above crests of the lower 2|3
interface. This wave-form is referred to as antisymmetrical in Horstmann et al. (2018). The
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(a) slow (1, 1,−) wave (b) rapid (1, 1, +) wave

Figure 3: Illustration of the typical interface deformation for a rotating (1, 1,±) wave. The
green arrows suggest a positive rotation direction for a wave with 𝜔 < 0. Top and bottom
interface deformations are (a) in phase opposition for slow − waves, the amplitude ratio

𝜖− < 0. For rapid + waves they are in phase (b), the amplitude ratio 𝜖+ > 0.

difference is visually illustrated in figure 3 for the fundamental slow and fast waves that have
𝑚 = 1 and 𝑛 = 1.
In the following, we will refer to a particular type of wave by providing the triplet (𝑚, 𝑛,±).

For each triplet (𝑚, 𝑛,±), we have unique values of 𝜔± and 𝜖±. The frequency 𝜔 itself can
take four values +𝜔−,−𝜔−, +𝜔+,−𝜔+. The sign of the frequency carries information on the
direction of rotation of the wave. By convention we fix 𝑚 > 0 and all field profiles are
proportional to exp(𝑖(𝑚𝜃 + 𝜔𝑡)). Hence, with 𝜔 < 0 we have a wave that rotates in the
positive, +𝒆𝜃 direction. In figure 3, we illustrate how the typical interface deformations for
the (1, 1,−) and (1, 1, +) waves move. For a wave with 𝜔 < 0, this whole pattern rotates in
the direction of +𝒆𝜃 , suggested by the green arrow.

2.4.3. Electrical problem at leading order, in the induction-less limit
Waves on the interface cause a redistribution of electrical current. We calculate the leading
order expression of [ 𝒋 𝑖 , 𝜑𝑖] = [ 𝒋̂ 𝑖 , 𝜑𝑖]𝑒i𝜔𝑡 in the induction-less, or static MHD limit. This
means that we solve

𝒋̂ 𝑖 = −𝜎𝑖∇𝜑𝑖 ∇ · 𝒋̂ 𝑖 = 0 (2.17)
together with the boundary conditions (2.6). We find the solution:

𝜑1 =
𝐽𝑅

𝜎1
𝑐
cosh(𝑘 (𝑧 − 𝐻1))
sinh(𝑘𝐻1)

𝐽𝑚(𝑘𝑟)𝑒𝑖𝑚𝜃 (2.18a)

𝜑2 =
𝐽𝑅

𝜎2

(
𝑑
cosh(𝑘𝑧)
sinh(𝑘𝐻2)

− 𝑐
cosh(𝑘 (𝑧 + 𝐻2))
sinh(𝑘𝐻2)

)
𝐽𝑚(𝑘𝑟)𝑒𝑖𝑚𝜃 (2.18b)

𝜑3 = − 𝐽𝑅

𝜎3
𝑑
cosh(𝑘 (𝑧 + 𝐻2 + 𝐻3))

sinh(𝑘𝐻3)
𝐽𝑚(𝑘𝑟)𝑒𝑖𝑚𝜃 (2.18c)

All electrical boundary conditions on the solid walls are built-in and one can check that 𝑗𝑧
is indeed continuous at 𝑧 = 0 and 𝑧 = −𝐻2. The coefficients 𝑐, 𝑑 are still undetermined, but
they are related to 𝑎, 𝑏 by the algebraical equations that follow from the jump conditions on
the electrical potential perturbations (2.6):(

−𝐴12 (𝜎2 sinh(𝑘𝐻2))−1
(𝜎2 sinh(𝑘𝐻2))−1 −𝐴23

) (
𝑐

𝑑

)
=

(
i(𝜎−1
2 − 𝜎−1

1 )𝑎
i(𝜎−1
3 − 𝜎−1

2 )𝑏

)
(2.19a)

Here we note

𝐴12 = 𝜎−1
1 tanh

−1(𝑘𝐻1) + 𝜎−1
2 tanh

−1(𝑘𝐻2),
𝐴23 = 𝜎−1

2 tanh
−1(𝑘𝐻2) + 𝜎−1

3 tanh
−1(𝑘𝐻3), (2.19b)
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Explicit formulas of 𝑐 and 𝑑 as a function of 𝑎 and 𝑏, can be calculated for arbitrary
conductivities 𝜎𝑖 , but these formulas are not practical. To get deeper insights and much
simpler expressions of 𝑐 and 𝑑, we add a supplementary hypothesis: we will assume that
layers 1 and 3 are much better conductors than layer 2, or more precisely that

𝜎2

𝜎𝑖

� min
(���� tanh(𝑘𝐻𝑖)
tanh(𝑘𝐻2)

���� , 1) , 𝑖 = 1, 3 (2.20)

In this limit, we can simplify the jump conditions (2.6b) and (2.6c) to :

𝜑2 |𝑧=0 ≈ 𝐽𝜎−1
2 𝜂12 , 𝜑2 |𝑧=−𝐻2 ≈ 𝐽𝜎−1

2 𝜂23 (2.21)

and find

𝑐 ≈ i𝑏 − 𝑎 cosh(𝑘𝐻2)
sinh(𝑘𝐻2)

, 𝑑 ≈ i𝑏 cosh(𝑘𝐻2) − 𝑎

sinh(𝑘𝐻2)
(2.22)

One can immediately notice that these definitions of 𝑐, 𝑑 are conductivity-independent. Just
as in aluminium reduction cells, the perturbed current distribution is independent of 𝜎𝑖 if
the difference in conductivity between the salt and the metal layers is big enough. This
approximation is certainly justified in LMBs: the molten salt electrolyte has a conductivity
𝜎2 that is easily 104 lower than 𝜎1 and 𝜎3 in the electrodes. This approximation was also
used in previous theoretical models for MPR instability in LMBs (Bojarevics & Tucs 2017;
Zikanov 2018; Molokov 2018).

2.4.4. Dissipationless growth rate, 𝜆𝑣

Having found the waves and the accompanying electrical current perturbations, we can
calculate the inviscid, induction-less or more simply, the dissipation-less growth rate 𝜆𝑣 .
This can be done by extending the perturbative approach of H19 (section 2.6.1) to three
regions of fluid. It simply is enough to change all sums

∑
𝑖=1,2 into sums that involve three

layers,
∑

𝑖=1,2,3. The formulas reduce in a similar way and so it makes little sense to repeat
the lengthy asymptotic procedure here. We end up with a new three-layer formula for the
growth rate 𝜆𝑣 that takes the following form:

𝜆𝑣 =
P𝑣

2K with P𝑣 =
∑︁

𝑖=1,2,3

∫
V𝑖

𝒖̂∗
𝑖 · (̂𝒋 𝑖 × 𝐵𝑧𝒆𝑧)𝑑𝑉 (2.23a)

and

K =
∑︁

𝑖=1,2,3

∫
V𝑖

𝜌𝑖 | |𝒖̂𝑖 | |2𝑑𝑉 =

(
Δ𝜌12

∫
S12

|𝜂12 |2 𝑑𝑆 + Δ𝜌23

∫
S23

|𝜂23 |2 𝑑𝑆
)
𝑔 (2.23b)

Interesting here is that P𝑣 is structurally similar to the electromagnetic power that was
mentioned in the discussion of the instability mechanism. The quantity K relates to the
kinetic (or potential) energy of the wave in the wave. In some sense, expressing the solvability
condition is not very different from expressing the mechanical energy theorem. Analytical
evaluation of these integrals yields the following explicit formula

𝜆𝑣 =
𝑚𝜔

𝜅2𝑚𝑛 − 𝑚2
𝐽𝐵𝑧

(Δ𝜌12 + 𝜖2Δ𝜌23)𝑔
Ξ (2.24a)
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with

Ξ =
1
2

[
(𝜖2 − 1) +

(
𝜖

sinh(𝑘𝐻2)
− 1
tanh(𝑘𝐻2)

) (
𝑘𝐻1

sinh2(𝑘𝐻1)
+ 1
tanh(𝑘𝐻1)

)
−

(
𝜖

sinh(𝑘𝐻2)
− 𝜖2

tanh(𝑘𝐻2)

) (
𝑘𝐻3

sinh2(𝑘𝐻3)
+ 1
tanh(𝑘𝐻3)

) ]
(2.24b)

We have tested the validity of this formula by comparing it to numerical evaluations of the
integrals. As in H19, we find the growth rate 𝜆𝑣 proportional to the positive wave-dependent
factor 𝑚𝜔/(𝜅2𝑚𝑛 − 𝑚2), a factor that balances force density 𝐽𝐵𝑧 over a gravitational force
density (Δ𝜌12 + 𝜖2Δ𝜌23)𝑔. The number Ξ depends on the wave and on the geometry of the
cell and it is not sign-definite. We will show that Ξ = 0 and hence 𝜆𝑣 = 0 is possible and that
this is the result of exactly opposing electromagnetic power transfers, as we have mentioned
in the discussion of figure 2.
To apply the previous formula, we start by fixing the pair of numbers 𝑚, 𝑛 and next we

compute 𝜖± and 𝜔±. Four waves can exist, with different frequencies 𝜔 = 𝜔−,−𝜔−, 𝜔+,−𝜔+
and respective amplitude ratios 𝜖 = 𝜖−, 𝜖−, 𝜖+, 𝜖+. Instability requires 𝜆𝑣 > 0, equivalent to
Sgn(𝑚𝜔𝐽𝐵𝑧Ξ) > 0 or alternatively Sgn(𝑚𝜔) = Sgn(𝐽𝐵𝑧Ξ). This means that out of 4 waves,
only 2 can be destabilised: those rotating in a specific direction, those with the right sign
of 𝜔. Considering that our waves are proportional to exp(𝑖(𝑚𝜃 + 𝜔𝑡)) and that 𝑚 > 0 by
convention, we can predict the direction of rotation of the unstable wave as follows:

Sgn(𝐽𝐵𝑧 Ξ) =
{

+1 , unstable waves have 𝑚𝜔 > 0, rotate along −𝒆𝜃
−1 , unstable waves have 𝑚𝜔 < 0, rotate along +𝒆𝜃 (2.25)

When Ξ = 0 no wave is being destabilized. In this particular case, P𝑣 = 0, which means that
the Lorentz force injects as much power as it is withdrawing. This possibility was already
mentioned above in the discussion of the instability mechanism.

2.4.5. Viscous dissipation, 𝜆𝑣𝑖𝑠𝑐

Due to viscosity the waves experience a weak damping. The viscous damping formula for
waves on a single layer of fluid layer in contact with air does not immediately extend to the
case of multiple layers, mainly because we also have interfacial boundary layers. Indeed,
the tangential inviscid wave-flow is not continuous across the interface and a thin viscous
boundary layer forms at the interface.
Case & Parkinson (1957) used an energy balance to calculate the approximative viscous

damping rate for wave on a single fluid layer. In H19, we have generalized this method to
find damping rates of waves in a two-layer system. Here, we use it to calculate the damping
rate of waves in the three-layer system. In practice, we just need to evaluate the following
formula

𝜆𝑣𝑖𝑠𝑐 =
D ′

4K with D ′ = − 2√
2

( ∑︁
𝑖=1,2,3

𝜌𝑖
√︁
𝜈𝑖 |𝜔|

∫
𝛿V𝑖

| |𝒖̂𝑖,⊥ | |2𝑑𝑆
)

(2.26)

and K as in (2.23b). The term D ′ is a boundary layer dissipation integral and in practice,
we can calculate it as the sum of three surface integrals that cover 𝛿𝑉𝑖 , the boundaries of
the three liquid zones (solid boundaries and interface). In the integrand, we find 𝒖̂𝑖,⊥, the
leading order Stokes layer correction of the flow that is tangential to the boundary. We need
to calculate these boundary layer corrections 𝒖̂𝑖,⊥ and this is done exactly as in H19. Let us
introduce 𝜁 a general notation for the coordinate that is everywhere normal to the boundary
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or interface, 0 at the boundary and inwardly increasing in the fluid 𝑖, e.g. for layer 1:

𝜁 =


𝑅 − 𝑟 , near 𝑟 = 𝑅

𝐻1 − 𝑧 , near 𝑧 = 𝐻1
𝑧 , near 𝑧 = 0

(2.27)

and similarly for the other layers. As usual with this type of approach, we do not model the
complex boundary layer structure in the corner regions or near the moving contact lines. At
leading order, 𝒖̂𝑖,⊥ needs to satisfy

i𝜔𝒖̂𝑖,⊥ = 𝜈𝑖𝜕
2
𝜁 𝜁 𝒖̂𝑖,⊥ (2.28)

on any portion of the boundary 𝛿𝑉𝑖 . This problem has two exponential solutions, but we
only keep the solution that is exponentially decaying away from the boundary. Near the solid
walls Σ𝑖 , we express the no-slip condition for the total flow: 𝒖̂𝑖,⊥ + 𝒖̂𝑖,⊥ |Σ𝑖

= 0. This yields
the boundary layer correction

near Σ𝑖 : 𝒖̂𝑖,⊥ = −𝒖̂𝑖,⊥ |Σ𝑖
𝑒
−Γ

√︃
|𝜔 |
𝜈𝑖

𝜁 (2.29)

We note Γ = (1 + i Sgn(𝜔))/
√
2. Around the interfaces we express continuity of tangential

viscous stress and continuity of tangential total flow, e.g. for the 1|2 interface:

𝜂1𝜕𝑧 𝒖̂2,⊥ |𝑧=0 = 𝜂2𝜕𝑧 𝒖̂2,⊥ |𝑧=0 , 𝒖̂1,⊥ + 𝒖̂1,⊥ |𝑧=0 = 𝒖̂2,⊥ + 𝒖̂2,⊥ |𝑧=0 (2.30)

This yields

near S12 : 𝒖̂1,⊥ = −
(
1 +

𝜌1
√
𝜈1

𝜌2
√
𝜈2

)−1 (
𝒖̂1,⊥ − 𝒖̂2,⊥

)
𝑒
−Γ

√︃
|𝜔 |
𝜈1

𝑧 (2.31a)

𝒖̂2,⊥ =

(
1 +

𝜌2
√
𝜈2

𝜌1
√
𝜈1

)−1 (
𝒖̂1,⊥ − 𝒖̂2,⊥

)
𝑒
Γ

√︃
|𝜔 |
𝜈2

𝑧 (2.31b)

For the 2|3 interface at 𝑧 = −𝐻2, calculations are similar and we find

near S23 : 𝒖̂2,⊥ = −
(
1 +

𝜌2
√
𝜈2

𝜌3
√
𝜈3

)−1 (
𝒖̂2,⊥ − 𝒖̂3,⊥

)
𝑒
−Γ

√︃
|𝜔 |
𝜈2

(𝑧+𝐻2) (2.32a)

𝒖̂3,⊥ =

(
1 +

𝜌3
√
𝜈3

𝜌2
√
𝜈2

)−1 (
𝒖̂2,⊥ − 𝒖̂3,⊥

)
𝑒
Γ

√︃
|𝜔 |
𝜈3

(𝑧+𝐻2) (2.32b)

as boundary layer corrections. It is easy to see here that all the boundary layer corrections
𝒖̂𝑖,⊥ decrease over a typical distance

√︁
𝜈𝑖/|𝜔| inward the fluid. This scale needs to be smaller

than 𝑅 or 𝐻𝑖 if we want the boundary layer approach to make sense. The electrolyte layer is
likely going to be the thinnest one, so one must verify that

√︁
𝜈2/|𝜔| � 𝐻2 prior to applying

the damping formula. In all the results of the following sections, we verify this inequality.
With the boundary layer corrections calculated everywhere, we can evaluate the surface

integrals that appear in the formula (2.26). We have found it useful to separate in 𝜆𝑣𝑖𝑠𝑐 the
interfacial contributions to the damping (suffix (𝑖)) from solid wall contributions (suffix (𝑠))
from the three distinct layers:

𝜆𝑣𝑖𝑠𝑐 = 𝜆
(𝑖)
𝑣𝑖𝑠𝑐

+ 𝜆
(𝑠)
𝑣𝑖𝑠𝑐,1 + 𝜆

(𝑠)
𝑣𝑖𝑠𝑐,2 + 𝜆

(𝑠)
𝑣𝑖𝑠𝑐,3 (2.33)
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The contributions from the interfacial boundary layers are :

𝜆
(𝑖)
𝑣𝑖𝑠𝑐

= − 1
2
√
2

𝜔2
√︁
|𝜔|

(Δ𝜌12 + 𝜖2Δ𝜌23)𝑔
∑︁
𝑗=1,2

Λ2𝑗 𝑗+1

(
1

𝜌 𝑗
√
𝜈 𝑗

+ 1
𝜌 𝑗+1

√
𝜈 𝑗+1

)−1
(2.34a)

with

Λ12 = (tanh−1(𝑘𝐻1) + tanh−1(𝑘𝐻2)) − 𝜖/sinh(𝑘𝐻2) (2.34b)
Λ23 = 𝜖 (tanh−1(𝑘𝐻3) + tanh−1(𝑘𝐻2)) − 1/sinh(𝑘𝐻2) (2.34c)

The solid wall contributions are :

𝜆
(𝑠)
𝑣𝑖𝑠𝑐,1 = − 1

2
√
2
1
𝑘𝑅

𝜌1𝜔
2
√︁
𝜈1 |𝜔|

(Δ𝜌12 + 𝜖2Δ𝜌23)𝑔

[
𝑘 (𝑅 − 𝐻1)
sinh2(𝑘𝐻1)

+ 𝑘2𝑅2 + 𝑚2

𝑘2𝑅2 − 𝑚2
1

tanh(𝑘𝐻1)

]
(2.35a)

𝜆
(𝑠)
𝑣𝑖𝑠𝑐,2 =

1
2
√
2
1
𝑘𝑅

𝜌2𝜔
2
√︁
𝜈2 |𝜔|

(Δ𝜌12 + 𝜖2Δ𝜌23)𝑔

[
(𝜖2 + 1)

(
𝑘𝐻2

sinh2(𝑘𝐻2)
− 𝑘2𝑅2 + 𝑚2

𝑘2𝑅2 − 𝑚2
1

tanh(𝑘𝐻2)

)
−2𝜖

(
𝑘𝐻2cosh(𝑘𝐻2)
sinh2(𝑘𝐻2)

− 𝑘2𝑅2 + 𝑚2

𝑘2𝑅2 − 𝑚2
1

sinh(𝑘𝐻2)

)]
(2.35b)

𝜆
(𝑠)
𝑣𝑖𝑠𝑐,3 = − 1

2
√
2
1
𝑘𝑅

𝜌3𝜔
2
√︁
𝜈3 |𝜔|

(Δ𝜌12 + 𝜖2Δ𝜌23)𝑔
𝜖2

[
𝑘 (𝑅 − 𝐻3)
sinh2(𝑘𝐻3)

+ 𝑘2𝑅2 + 𝑚2

𝑘2𝑅2 − 𝑚2
1

tanh(𝑘𝐻3)

]
(2.35c)

We have checked that these damping formulas yield the correct two layer limits of H19. As
in H19, there always remains a degree of uncertainty in these formulas because the boundary
layer regions near the moving menisci are not properly modeled. In reality they depend
on wetting properties and although theoretical modeling is possible, see Viola & Gallaire
(2018), this type of model is much more complex and not yet existing for two or three-layer
systems.

2.4.6. Magnetic dissipation, 𝜆𝑣𝑣

In the calculation of 𝜆𝑣 , we have used an induction-less version of Ohm’s law. This static
approximation ignores that induced currents will arise due to the term 𝜎𝑖𝒖𝑖 × 𝐵𝑧𝒆𝑧 . This
induction only occurs in the well-conducting metal layers and results in a weak magnetic
damping 𝜆𝑣𝑣 that we can calculate. In H19, it is explained how a correction to the electrical
potential Ψ𝑖 and current density J𝑖 = 𝜎𝑖 (−∇Ψ𝑖 + 𝒖𝑖 × 𝐵𝑧𝒆𝑧) needs to be added to have
a total perturbed current 𝒋 𝑖 + J𝑖 that takes into account induction. Once this extra current
perturbation J𝑖 is known, we can found a quasi-static correction to the growth rate in the
term

𝜆𝑣𝑣 =
Q𝑣𝑣

2K with Q𝑣𝑣 =
∑︁

𝑖=1,2,3

∫
V𝑖

𝒖̂∗
𝑖 ·

(
Ĵ𝑖 × 𝐵𝑧𝒆𝑧

)
𝑑𝑉, (2.36)

For arbitrary fluid combinations, there is no simple way to calculate the current correction
Ĵ𝑖 . However, since we have assumed that only fluids 1 and 3 are good conductors, we can
be sure that induction will only occur inside zones 1 and 3, such that Ĵ2 = 0 is a good
approximation. This means that the quasi-static potential corrections are the solutions of

∇2Ψ̂1 = 0 , 𝜕𝑧Ψ̂1 |𝑧=0 = 𝜕𝑧Ψ̂1 |𝑧=𝐻1 = 0 , 𝜕𝑟 Ψ̂1 |𝑟=𝑅 = 𝑢̂𝜃,1 |𝑟=𝑅𝐵𝑧 (2.37)

∇2Ψ̂3 = 0 , 𝜕𝑧Ψ̂3 |𝑧=−𝐻2 = 𝜕𝑧Ψ̂3 |𝑧=−𝐻2−𝐻3 = 0 , 𝜕𝑟 Ψ̂3 |𝑟=𝑅 = 𝑢̂𝜃,3 |𝑟=𝑅𝐵𝑧

This problem was solved in one layer in H19. Here we can simply adapt the solution that
was found there, to cover the case with 2 well conducting layers. We can then evaluate the
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integral Q𝑣𝑣 that provides access to the magnetic damping term. We find

𝜆𝑣𝑣 = 𝜆𝑣𝑣,1 + 𝜆𝑣𝑣,3 (2.38)

with

𝜆𝑣𝑣,1 =
𝜎1𝐵

2

Δ𝜌12 + 𝜖2Δ𝜌23

𝜔2

𝑔𝑘

[
−1
4

(
1

tanh(𝑘𝐻1)
+ 𝑘𝐻1

sinh2(𝑘𝐻1)

)
+ 1
𝑘2𝑅2 − 𝑚2

× ©­« 𝑚

𝑘𝐻1
+ 4𝑚2

∞∑︁
𝑗=1

(
1
𝑗𝜋

)
𝑘3

𝑅(𝑘2 + ( 𝑗 𝜋

𝐻1
)2)2

𝐼𝑚( 𝑗 𝜋𝑅

𝐻1
)

𝐼𝑚−1( 𝑗 𝜋𝑅

𝐻1
) + 𝐼𝑚+1( 𝑗 𝜋𝑅

𝐻1
)
ª®¬
 (2.39a)

𝜆𝑣𝑣,3 = 𝜖2
𝜎3𝐵

2

Δ𝜌12 + 𝜖2Δ𝜌23

𝜔2

𝑔𝑘

[
−1
4

(
1

tanh(𝑘𝐻3)
+ 𝑘𝐻3

sinh2(𝑘𝐻3)

)
+ 1
𝑘2𝑅2 − 𝑚2

× ©­« 𝑚

𝑘𝐻3
+ 4𝑚2

∞∑︁
𝑗=1

(
1
𝑗𝜋

)
𝑘3

𝑅(𝑘2 + ( 𝑗 𝜋

𝐻3
)2)2

𝐼𝑚( 𝑗 𝜋𝑅

𝐻3
)

𝐼𝑚−1( 𝑗 𝜋𝑅

𝐻3
) + 𝐼𝑚+1( 𝑗 𝜋𝑅

𝐻3
)
ª®¬
 (2.39b)

Here 𝐼𝑚 and 𝐼𝑚±1 are modified Bessel functions. The sum over 𝑗 quickly decays with
increasing 𝑗 and needs to be truncated in practice, when a machine precision is attained.

2.5. Supplementary material: Jupyter notebook
Although all the formulas for 𝜔±, 𝜖±, 𝜆𝑣 , 𝜆𝑣𝑣 , 𝜆𝑣𝑖𝑠𝑐 are explicit, they remain nevertheless
quite cumbersome. For this reason, we provide in the supplementary material a Jupyter
notebook that encodes all the previous formulas.One can easily change thematerial properties
and the geometrical parameters defining the battery, in a single parameter variable. The
notebook then allows to calculate the growth rates of all the possible waves (𝑚, 𝑛,±). It also
includes all the procedures that were used to produce most of the figures that appear in this
article.

3. Applications
3.1. Mg| |Sb simulations of Weber et al. (2017a,b)

MPR instability in a Mg| |Sb battery was studied numerically by Weber et al. (2017a,b) in a
small, centimeter-scale cell with geometrical parameters

(𝑅, 𝐻1, 𝐻2, 𝐻3) = (0.05, 0.045, 0.01, 0.045)m (3.1)

Material parameters are

(𝜌1, 𝜌2, 𝜌3) = (1577, 1715, 6270) kg m−3

(𝜎1, 𝜎2, 𝜎3) = (3.6 × 106, 80, 8.7 × 105) S m−1

(𝜈1, 𝜈2, 𝜈3) = (6.7, 6.8, 2) × 10−7m2 s−1 (3.2)

The particularity of Mg| |Sb LMBs is that the density jump Δ𝜌12 � Δ𝜌23. As a result,
interfaces are decoupled and MPR instability is nearly as in a two-layer system. This was
already shown in Weber et al. (2017a,b) and H19 showed that the two-layer stability theory
precisely captures MPR instability in this cell. Nevertheless, this Mg| |Sb cell still remains a
useful test-case to our three-layer model. For a large number of waves (𝑚, 𝑛,±), we start by
computing the numbers

𝜆𝑣 =
𝜆𝑣

𝐽𝐵𝑧Sgn(𝜔)
, 𝜆𝑣𝑖𝑠𝑐 , 𝜆𝑣𝑣 =

𝜆𝑣𝑣

𝐵2𝑧
(3.3)
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Figure 4: Three-layer theory applied to the small Mg| |Sb cell of Weber et al. (2017a,b).
(a) Marginal stability curves for various waves in the 𝐽 − 𝐵𝑧 plane. (b) Growth rate 𝜆 (s−1)
of the dominant, fundamental sloshing wave (1, 1,−) in the 𝐽𝐵𝑧-plane. Numerical growth

rate measurements are available along the red line with 𝐵𝑧 = 10mT.

The growth rate is then calculated a posteriori for varying 𝐽 and 𝐵𝑧 using the formula
𝜆 = |𝜆𝑣 |𝐽𝐵𝑧 + 𝜆𝑣𝑖𝑠𝑐 + 𝜆𝑣𝑣𝐵

2
𝑧 . For given 𝐵𝑧 , instability occurs when the current density

exceeds a critical value 𝐽 > 𝐽𝑐 . According to our theory, this critical current density is

𝐽𝑐 = −
𝜆𝑣𝑣𝐵

2
𝑧 + 𝜆𝑣𝑖𝑠𝑐

|𝜆𝑣 |𝐵𝑧

(3.4)

In figure 4-(a), we show some theoretical marginal stability curves in the plane 𝐽 ∈
[0, 10000] Am−2, 𝐵𝑧 ∈ [0, 0.1] T. In this part of the parameter space, we only find unstable
(𝑚, 1,−) waves. Waves with higher radial label, 𝑛 > 1 or + waves from the fast branch
are stable. The large-scale sloshing wave (1, 1,−) is first destabilised and it is also the
most unstable everywhere according to theory. This wave has frequency 𝜔− = 2.74 s−1
which corresponds to the value observed by Weber et al. (2017a,b). Its amplitude ratio is
𝜖− = −0.022, whichmeans that the lower 2|3 interface is practically undeformed, as expected.
In figure 4-(b), we show the growth rate 𝜆 of this (1, 1,−) wave in the 𝐽 − 𝐵𝑧 plane. The
shape of this growth rate diagram is similar to what we have seen in H19 and in Nore et al.
(2021). Magnetic fields as high as 𝐵𝑧 = 0.1 T are very unlikely in reality, but allow us to see
the possibly stabilizing effect of magnetic damping.
The simulations of Weber et al. (2017a,b) were done with OpenFOAM. We have done

a small number of complementary simulations of the same set-up using SFEMaNS. These
simulations confirm that the (1, 1,−) wave is the most destabilised wave. A snapshot from a
simulation with 𝐽 = 10000Am−2 and 𝐵𝑧 = 10mT is shown in 5-(a). We show the deformed
interfaces, together with the flow intensity and some streamlines for the current perturbation
𝒋 𝑡𝑜𝑡 − 𝐽𝒆𝑧 . The bottom 2|3 interface is indeed almost undeformed. Over time, this entire
pattern rotates in the positive +𝒆𝜃 direction, in agreement with (2.25): 𝐽𝐵𝑧 > 0 and for
this wave Ξ = −2.39 < 0. In figure 5-(b) we compare the theoretical growth rates to the
numerical values measured in our simulations and to those reported by Weber et al. (2017a)
for 𝐵𝑧 = 10mT and variable 𝐽. For this low 𝐵𝑧 , magnetic damping is negligible with respect
to viscous damping ( 𝜆𝑣𝑣 = −0.00389 s−1 compared to 𝜆𝑣𝑖𝑠𝑐 = −0.0674 s−1).
Overall the 3-layer theory agrees well with the numerical simulations for this Mg| |Sb
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Figure 5: (a) Snapshot of a (1, 1−) wave that grows in a small Mg| |Sb battery simulated
using SFEMaNS with 𝐽 = 104 Am−2 and 𝐵𝑧 = 10mT. We visualize the interfaces, the
flow intensity and lines of the current density perturbation 𝒋 𝑡𝑜𝑡 − 𝐽𝒆𝑧 associated with the
wave. (b) Growth rate of the instability as a function of current 𝐼 = 𝐽𝜋𝑅2 for fixed
𝐵𝑧 = 10mT. The theory compares well to growth rates measured in numerical

simulations done with OpenFOAM and SFEMaNS.

battery, but not better than the 2-layer theory (see figure 14-b in H19). As in H19 and Nore
et al. (2021), the theory suggests slightly larger growth rates and this indicates that viscous
dissipation is a bit higher in the simulations. A weak amount of numerical dissipation is
certainly present in all simulations, but also the theory for 𝜆𝑣𝑖𝑠𝑐 remains perfectible.

3.2. The three-layer simulations of Horstmann et al. (2018)
As explained byHorstmann et al. (2018), not all LMBs behave as two-layer systems.When the
density jump ratio Δ𝜌12/Δ𝜌23 ≈ 1, interfaces are coupled and all three layers can participate
in the wave motion. We apply our theory to the three-layer set-ups studied numerically by
Horstmann et al. (2018). The fluid layers have the same sizes as in the previous section:

(𝑅, 𝐻1, 𝐻2, 𝐻3) = (0.05, 0.045, 0.01, 0.045)m (3.5)

Material properties are allowed to vary more freely

(𝜌1, 𝜌2, 𝜌3) = (variable, 3000, 3500) kg m−3

(𝜎1, 𝜎2, 𝜎3) = (106, 500, 106) S m−1

(𝜈1, 𝜈2, 𝜈3) = (6.7, 6.7, 6.7) × 10−7m2 s−1 (3.6)

and do not reflect a actual type of LMB. In their simulations, Horstmann et al. (2018) varied
the top layer density 𝜌1 ∈ [500, 2950] kg m−3. The external magnetic field was held fixed at
𝐵𝑧 = 10mT and the total imposed current 𝐼 = 𝐽𝜋𝑅2 was varied in the interval 𝐼 ∈ [0, 500]A.
All simulations were done with a small surface tension 𝛾1 |2 = 𝛾2 |3 = 0.1Nm−1, that only
weakly affects the waves and here is ignored in our theory.
As the density 𝜌1 and applied total current 𝐼 vary, different unstable waves can be observed

in the simulations, see figure 6. In panel (a), we show the theoretical periods 𝑇 = 2𝜋/𝜔 of
the waves (1, 1, +) and (1, 1,−), as a function of Δ𝜌12/Δ𝜌23 along with the numerically
measured periods in the late time state. For both low and high values of Δ𝜌12/Δ𝜌23, it is
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Figure 6: (a) The period 𝑇 = 2𝜋/𝜔 of the unstable wave in the simulations of Horstmann
et al. (2018) varies with Δ𝜌12/Δ𝜌23 and suggests that both (1, 1,−) or (1, 1, +)
wave-modes can be selected. (b) Phase diagram in which we locate MPR-unstable
simulations in the Δ𝜌12/Δ𝜌23 - 𝐼 plane, + for the (1, 1, +) wave and − for the (1, 1,−)
wave. The full lines correspond to the theoretical marginal instability curves of the
(1, 1,±)- waves. Cyan vertical lines indicate frontiers between different selected

wave-patterns according to the numerics (full lines) and our linear stability theory (dotted
lines).

evident that the (1, 1,−) wave is observed. For values of Δ𝜌12/Δ𝜌23 close to 1, the fast
wave (1, 1, +) is preferred. The inset figures show the typical interface deformations that are
observed in the simulations. In this diagram, information on the value of the current 𝐼 is
lacking. In figure 6-(b), we locate the simulations that found unstable waves in theΔ𝜌12/Δ𝜌23
- 𝐼 plane, using a + symbol when a (1, 1, +) wave was observed and a − symbol when a
(1, 1,−) wave was observed. We clearly see the interval of dominance of each wave-mode
and also that unstable (1, 1, +) waves require significantly higher currents of order 400A to
become unstable in the simulations.
Let us now apply our theoretical model. We compute the numbers 𝜆𝑣 , 𝜆𝑣𝑖𝑠𝑐 , 𝜆𝑣𝑣 for both

waves (1, 1,±) and for varying 𝜌1 ∈ [500, 2950] kg m−3. We then use (3.4), to calculate the
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(a) Complex nonlinear transition, Δ𝜌12/Δ𝜌23 = 1
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Figure 7: Timeseries of interface deformation (OpenFOAM) and modal kinetic energy
(SFEMaNS). (a) Example of nonlinear transition towards a state in which the (1, 1, +)
wave dominates (𝐼 = 450A, 𝜌1 = 2500 kg m−3, 𝐵𝑧 = 10mT . Growth rates cannot be
measured here. (b-c) For lower currents we can measure growth rates using exponential
fits on the maximal interface deformation in OpenFOAM or modal kinetic energy in

SFEMaNS (𝐼 = 200A, 𝜌1 = 1000 kg m−3, 𝐵𝑧 = 10mT).

critical current 𝐼𝑐 = 𝜋𝑅2𝐽𝑐 , for both waves as a function of 𝜌1. These critical currents define
the marginal stability curves that are visible as full lines in figure 6-(b). One can immediately
notice that the marginal instability curves move up to very high 𝐼 when Δ𝜌12/Δ𝜌23 ≈ 1.
All numerical simulations that yield (1, 1,−) modes are above the theoretical marginal
stability line. For (1, 1, +) modes this is often the case but not always. The theoretical
Δ𝜌12/Δ𝜌23 -interval where the (1, 1, +) wave is dominant (distance between cyan dotted
lines) is significantly narrower than what is observed in the simulations (distance between
cyan full lines). The transition from (1, 1−) to (1, 1, +) modes near Δ𝜌12/Δ𝜌23 ≈ 1.4 is
surprisingly well reproduced by the theory.
In figure 6-(b), we have compared late time nonlinear states with linear stability character-

istics. This obviously is hazardous when the nonlinear evolution that leads to the late-time
state is complex. Complex nonlinear transitions are observed in all the numerical simulations
that result in (1, 1, +) waves. In figure 7, one can see an example of such a transient in the
simulationwith 𝐼 = 450A,Δ𝜌12/Δ𝜌23 = 1.We show the difference between themaximal and
minimal interface deformation as a function of time, on both 1|2 and 2|3 interfaces. After an
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𝜌1 Δ𝜌12/Δ𝜌23 𝜆 (theory) 𝜆 (OpenFOAM 1|2 fit) 𝜆 (OpenFOAM 2|3 fit) 𝜆 (SFEMaNS)
500 5 0.110 - - 0.090
1000 4 0.098 0.093 ± 0.02 0.11 ± 0.01 0.084
2750 0.5 0.081 - - 0.074
2800 0.4 0.139 0.168 ± 0.008 0.144 ± 0.02 0.131

Table 1: Comparison of the theoretical growth rate 𝜆 (s−1) with numerically measured
growth rates, for different values of 𝜌1 (kg m−3), 𝐼 = 200A, 𝐵𝑧 = 10mT. Other

geometrical and material parameters are specified in (3.11).
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Figure 8: (a) Growth rate of various waves (𝑚, 1,±) as a function of Δ𝜌12/Δ𝜌23 for
𝐼 = 200A and several numerical measures. Near Δ𝜌12/Δ𝜌23 ≈ 1 there is a gap where all
waves are stable. Datapoints from OpenFOAM simulations in white and black dots,
data-points from SFEMaNS simulations in red squares (b) The relative dissipation-less
growth rate |𝜆𝑣 |/𝐽𝐵𝑧 as a function of Δ𝜌12/Δ𝜌23 vanishes sign near Δ𝜌12/Δ𝜌23 ≈ 1.

initial rapid growth of an axisymmetric bulge that was described in Horstmann et al. (2018),
the signal gradually decays to settle into a low amplitude, symmetrical (1, 1, +) wave at late
time (𝑡 > 300s). This transition is clearly too nonlinear for linear stability theory to make
much sense. For lower currents 𝐼 = 200A, we have observed much simpler weakly nonlinear
dynamics, in which a clear phase of exponential growth leads to a saturated (1, 1,−) wave.
For these simulations, we can obtain growth rate measurements. In OpenFOAM, we have
done exponential fits on the maximal interface deformation data that is slightly noisy, see
figure 7-(b) for an example. In SFEMaNS, we use a Fourier representation along the azimuth
and this allows us to follow the growth of weak non-axisymmetric waves through modal
kinetic energies, per azimuthal wavenumber 𝑚. Exponential fits on this data provide very
precise measurements of the numerical growth rates, see figure 7-(c).
In Table 1 we gather the numerically measured growth rates and we compare them to the

value estimated by our theory. As can be seen, the numerical growth rates match fairly well
the theoretical growth rate values. As in H19, we see small differences between both solvers,
OpenFOAM and SFEMaNS. In figure 8-(a), we add these numerically measured growth
rates on a background of theoretical growth rate lines for various waves and as a function
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of Δ𝜌12/Δ𝜌23 (OpenFOAM fit in white and black dots, SFEMaNS fit in red squares). The
quantitive agreement with theory can be visually appreciated. According to theory, the
(1, 1,−) wave is the most unstable one over the entire Δ𝜌12/Δ𝜌23-interval. Interesting to
notice here is that other waves (𝑚, 1,−), with higher azimuthal wavenumber 𝑚 are also
destabilised at approximately similar rates when Δ𝜌12/Δ𝜌23 < 1. Near Δ𝜌12/Δ𝜌23 ≈ 1 there
are no unstable waves for this value of current, 𝐼 = 200A.
The existence of a ”forbidden” region is certainly not due to an increased dissipation. It

rather is the consequence of the fact that the dissipation-less growth rate 𝜆𝑣 vanishes at some
point near Δ𝜌12/Δ𝜌23 ≈ 1. This can be seen better in figure 8-(b), that shows the relative
dissipation-less growth rate |𝜆𝑣 |/𝐽𝐵𝑧 for various waves as a function of Δ𝜌12/Δ𝜌23. Each
wave has a unique value of Δ𝜌12/Δ𝜌23 for which 𝜆𝑣 = 0. Most slow branches (−) reach 0 at
Δ𝜌12/Δ𝜌23 ≈ 1. Most fast branches (+) vanish near Δ𝜌12/Δ𝜌23 ≈ 0.8. Notice that the fact
that 𝜆𝑣 can be zero also explains why the marginal stability curves in figure 6-(b) went up so
high. Interestingly, we also understand better why the (1, 1, +) wave can be the most unstable
one near Δ𝜌12/Δ𝜌23 ≈ 1: the (1, 1,−) wave has a nearly vanishing 𝜆𝑣 there.
We now show that the existence of weak instability regions in our theory relates to the

opposing power transfers that were mentioned in the discussion of figure 2-(b) and (c). To
show this more precisely, we start by looking back at the theoretical formula (2.24) for 𝜆𝑣 .
In the present set-up, with 𝐻1 = 𝐻3, we can simplify the factor Ξ to

𝐻1 = 𝐻3 : Ξ =
1
2
(𝜖2 − 1)

[
1 + 1
tanh(𝑘𝐻2)

(
𝑘𝐻1

sinh2(𝑘𝐻1)
+ 1
tanh(𝑘𝐻1)

)]
(3.7)

This means that, in this cell with 𝐻1 = 𝐻3, we can have Ξ = 0 or 𝜆𝑣 = 0 when the interfaces
are deformed in exactly symmetrical (𝜖 = +1) or anti-symmetrical (𝜖 = −1) ways. Using the
theoretical expression (2.16) of the amplitude ratio 𝜖 , we can identify for which values of 𝜌1
we have 𝜖± = ±1:

wave (1, 1,−) : 𝜖− = −1 for 𝜌1 ≈ 2523 kg m−3, Δ𝜌12/Δ𝜌23 = 0.954 (3.8a)
wave (1, 1, +) : 𝜖+ = +1 for 𝜌1 ≈ 2610 kg m−3, Δ𝜌12/Δ𝜌23 = 0.78 (3.8b)

These values indeed coincide with the points where 𝜆𝑣 = 0 in figure 8-(b). Let us now rewrite
the integral expression (2.23a) that defines 𝜆𝑣 in the following way

𝜆𝑣 =
∑︁

𝑖=1,2,3

∫
V𝑖

p𝑖 𝑑𝑉 with p𝑖 =
𝒖̂∗
𝑖 · ( 𝒋̂ 𝑖 × 𝐵𝑧)
2K (3.9)

In this formula, the field p𝑖 indeed is a normalized power density. If p𝑖 > 0, the Lorentz force
is locally pointing in the direction of the instantaneous flow and hence locally magnifying the
wave. If p𝑖 < 0 the Lorentz force is on the contrary opposing to the instantaneous flow and
hence it will locally damp the wave. In figure 9, we show the spatial distribution of p𝑖/𝐽𝐵𝑧

in meridional planes for both types of waves (1, 1,−) in (a) and (1, 1, +) in (b), and for these
very particular values of 𝜌1 that yield 𝜆𝑣 = 0. We clearly observe perfectly antisymmetric
distributions of power density that will cause

∑
𝑖=1,2,3

∫
V𝑖
p𝑖 𝑑𝑉 = 0. Having 𝜆𝑣 = 0 indeed

means that Lorentz force is destabilising in one half of the cell but stabilising in the other
half. In other cells with 𝐻1 ≠ 𝐻3, a similar balance of power can yield 𝜆𝑣 = 0, but not with
𝜖± = ±1 exactly and for values of Δ𝜌12/Δ𝜌23 that can be different for each wave.
We conclude that our three-layer stability theory describes well the simulations of

Horstmann et al. (2018). We cannot always explain why the (1, 1, +) wave appears in the late
time state of the simulations since this is also the result of more complex nonlinear dynamics.
On the growth rates that we were able to measure, we have reached quantitive agreement.
Weak instability regions are present and influence mode selection.
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Figure 9: The normalized power density p𝑖 is perfectly anti-symmetrical in the special
case of a vanishing dissipation-less growth rate. We show p𝑖/𝐽𝐵𝑧 in the meridional plane
of the cell of Horstmann et al. (2018) when 𝜆𝑣 = 0 exactly. (a) for the slow (1, 1,−) wave

with 𝜖− = −1 at 𝜌1 = 2523 kg m−3. (b) for the fast (1, 1, +) wave with 𝜖+ = 1 at
𝜌1 = 2610 kg m−3.

3.3. A cylindrical version of the Na||Bi cell of Tucs et al. (2018a)
Tucs et al. (2018a) study metal pad roll instability inside discharging Na||Bi cells with square
cross section and lateral sizes of 𝐿𝑥 = 𝐿𝑦 = 0.2m. Square and cylindrical cells are very
comparable for what concerns the MPR instability, because the rotating waves (1, 1,±) of
the cylindrical cell are near to the most unstable superposition of standing waves, often
labeled (1, 0) + (0, 1). Therefore, we have found it interesting to apply our stability model
to a cylindrical version of the cells studied by Tucs et al. (2018a). The geometry of our
cylindrical equivalent is

(𝑅, 𝐻1, 𝐻2, 𝐻3) = (0.2/
√
𝜋, variable, 0.01, , variable)m (3.10)

Our cell has the same cross-section as that of Tucs et al. (2018a).We considerMPR instability
in the interval 𝐻1 ∈ [0.02, 0.05]m, with 𝐻3 = 0.07m − 𝐻1. Material properties are

(𝜌1, 𝜌2, 𝜌3) = (831, 2540, 9720) kg m−3

(𝜎1, 𝜎2, 𝜎3) = (3.5 × 106, 200, 0.69 × 106) S m−1

(𝜈1, 𝜈2, 𝜈3) = (0.26, 0.67, 1.1) × 10−6m2 s−1 (3.11)

As in Tucs et al. (2018a), we send a total current of 𝐼 = −130A through the cell, equivalent to
a current density 𝐽 = −3250Am−2. We vary the magnetic field 𝐵𝑧 . Our electrical boundary
conditions on the side and the top and bottom plates are also identical to those of Tucs et al.
(2018a). Our modeling of the viscous damping is however very different from that of Tucs
et al. (2018a): they use the classical shallow fluid layer friction formula of Landau & Lifshitz
(1987) that excludes damping in interfacial boundary layers.
In figure 10-(a), we show the theoretical growth rate 𝜆 of a function of 𝐻3 for two different

values of 𝐵𝑧 = 1𝑚𝑇 and 𝐵𝑧 = 30𝑚𝑇 . Full lines show the general non-shallow theory, the
dashed lines correspond to the shallow limits derived in appendix A.1. A shallow description
is clearly adapted to this cell. For the low value of 𝐵𝑧 = 1𝑚𝑇 that was used by Tucs et al.
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Figure 10: Theoretical growth rates 𝜆 as a function of 𝐻3 for various waves in the
cylindrical version of the Na||Bi cell of Tucs et al. (2018a). The general theory (full lines)
is well approximated by the shallow limit formulas (dashed lines). (a) With low 𝐵𝑧 = 1mT
we do not find unstable waves. (b) A high magnetic field 𝐵𝑧 = 30mT is necessary to
destabilize a (1, 1,−) mode and only in cells with large enough 𝐻3. The red square is a
data-point from a SFEMaNS simulation that is reasonably close to the theoretical curve.

(2018a), panel (a), our theory indicates a stable cell: all waves have 𝜆 < 0 for all values of
𝐻3. According to our theory, MPR instability needs magnetic field intensities that are at least
13 times higher for the cell to become unstable in the studied 𝐻3-interval. In figure 10-(b),
we show the growth rate diagram with 𝐵𝑧 = 30𝑚𝑇 . For this significantly higher 𝐵𝑧 , the
magnetic damping term 𝜆𝑣𝑣 is not negligible. Our theory suggests a stable cell for low 𝐻3
and an unstable cell for large 𝐻3. This wave has 𝜔− ≈ 3.5 s−1 over the entire 𝐻3 interval,
which yields 𝑓 = 𝜔/2𝜋 ≈ 0.56Hz as frequency, a value that is remarkably close to the
0.55Hz observed in the square cell by Tucs et al. (2018a).
According to our theory, the cylindrical version of the Na||Bi cell is much less unstable

than the comparable square cell of Tucs et al. (2018a). This may be due to the fact that
Tucs et al. (2018a) have used a viscous damping formula that is perhaps not really adapted.
We have done a small number of direct numerical simulations using SFEMaNS to check
our theoretical predictions. DNS of this set-up is incredibly difficult, because it needs to be
very finely resolved. Boundary layers in which damping occurs have an estimated width of√︁
𝜈/𝜔 ≈ 0.5mm. We use meridional grids that have minimal mesh-sizes that reach this fine
scale which is more than 200 times smaller than the radius 𝑅 of the cell. To handle this
fine spatial resolution, we need time-steps that are smaller then 0.4ms which means that we
need no less than 5000 steps per wave-period (≈ 2s). By initialising the calculation with the
expected rotating wave, we are able to catch the exponential growth on a total integration time
that covers only 10 rotation periods. For the set-up with 𝐻3 = 5cm, this yields a growth rate
measure of about 𝜆 = 0.063 s−1. This data-point is added in figure 10-(b) and is reasonably
close to the theoretical line. This is reassuring for our model.

3.4. Critical magnetic field 𝐵𝑧,𝑐 for 105A cells
Tucs et al. (2018b) formulate a MPR stability theory for shallow large scale LMBs. In one of
the numerical applications, the considered cell is supposed rectangular, with lateral sizes 𝐿𝑥 =
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# cell Type (𝜌1, 𝜌2, 𝜌3) in (kg m−3) Δ𝜌23/Δ𝜌12
1 Li || Te (489, 2690, 5782) 1.40
2 Na || Sn (801, 2420, 6740) 2.67
3 Li || Bi (488, 2690, 9800) 3.23
4 Li || Pb (488, 2690, 10463) 3.53
5 Na|| Bi (831, 2549, 9720) 4.17
6 Li || Zn (488, 1628, 6509]) 4.28
7 Li||Sn (495, 1644, 6877) 4.55
8 Ca || Sb (1401, 1742, 6270) 13.28
9 Ca || Bi (1434, 1803, 9720) 21.46
10 Mg || Sb (1577, 1715, 6270) 33.01

Table 2: Densities of the different layers and density jump ratio Δ𝜌23/Δ𝜌12, for the
different LMBs studied by Tucs et al. (2018b).
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Figure 11: Critical magnetic field 𝐵𝑧,𝑐 for the onset of MPR instability in large scale
cylindrical LMBs of ten different types (see table 2) that alter the density jump ratio

Δ𝜌23/Δ𝜌12. Symbols ± indicate that either (1, 1,±) can be the first destabilised waves.
(𝑅, 𝐻1, 𝐻2, 𝐻3) = (3.03, 0.2, 0.04, 0.2)m, 𝐼 = 105A.

8m and 𝐿𝑦 = 3.6m and fluid layer heights are fixed at (𝐻1, 𝐻2, 𝐻3) = (0.2, 0.04, 0.2)m. A
total current of 𝐼 = 105A passes through the cell, which is equivalent to a current density of
𝐽 = 3472Am−2. Viscosity is held fixed at 𝜈𝑖 = 10−6m2s−1 everywhere. Ten different types
of LMBs using metal-electrolyte-alloy combinations are compared and in table 2 we recall
the densities of the three layers in these ten different LMB-types (data from Horstmann et al.
(2018)). For each of these LMBs, (Tucs et al. 2018b, figure 7) calculate a critical vertical
magnetic field 𝐵𝑧,𝑐 for the onset of MPR instability.
We use our stability theory to calculate similar critical magnetic fields for the onset of

MPR in cylindrical LMBs.We use the same heights of fluid layers (𝐻1, 𝐻2, 𝐻3) and the same
total current 𝐼. Our cylindrical cell has 𝑅 =

√︁
𝐿𝑥𝐿𝑦/𝜋 = 3.03m to have an identical section,

so we also have the same 𝐽. For a large variety of waves (𝑚, 𝑛,±) we calculate the relative
dissipation-less growth rate 𝜆𝑣 = 𝜆𝑣/𝐽𝐵𝑧 and the viscous damping 𝜆𝑣𝑖𝑠𝑐 . Magnetic damping
𝜆𝑣𝑣 can be ignored here because the fields 𝐵𝑧 needed to destabilize such large cells are very
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Figure 12: Critical current density 𝐽𝑐 for the onset of MPR instability in different types of
LMBs with varying radius 𝑅, fixed fluid layer heights (𝐻1, 𝐻2, 𝐻3) = (0.2, 0.04, 0.2)m.
We use a worst case scenario estimate for the vertical magnetic field, 𝐵𝑧 ≈ 𝜇0𝐽𝜋𝑅/2.
Dashed lines when (1, 1, +) waves are the first destabilized, full lines in the case of

(1, 1,−) waves.

low. Hence, we can estimate the critical magnetic field for the onset of MPR instability of a
particular wave as

𝐵𝑧,𝑐 = −𝜆𝑣𝑖𝑠𝑐

|𝐽𝜆𝑣 |
(3.12)

The lowest value 𝐵𝑧,𝑐 defines the threshold magnetic field intensity. In cell 1, using the exotic
combination of Li || Te, we find that the (1, 1, +) wave is the first destabilised. Interestingly,
this cell also has the ratio Δ𝜌23/Δ𝜌12 closest to unity. In all the other cells, 2 to 10, it is the
(1, 1,−) wave that has the lowest instability threshold. Typical values of 𝐵𝑧,𝑐 are everywhere
found within the 0.1 − 1.2mT range and just slightly above the dissipation-less values given
by (Tucs et al. 2018b, figure 7). The critical magnetic field is lowest for the Mg||Sb cell,
which is not really surprising. Of all LMBs, this one has the lowest density difference on one
of its interfaces Δ𝜌12 = 138 kg m−3. Deforming this interface simply requires less Lorentz
force.

3.5. Domains of stability in a radius - current density diagram
Rather than using the magnetic field to express the instability threshold, we can also estimate
the domain of stability of a cell with fixed layer heights in a 𝑅 − 𝐽 plane. This allows to
measure the critical size of a cell operating with a given current density. Let us give an
example. We fix (𝐻1, 𝐻2, 𝐻3) = (0.2, 0.04, 0.2)m as in the large scale study of Tucs et al.
(2018b). We vary 𝑅 ∈ [0.1, 5]m. Rather than taking some ad hoc, fixed value of 𝐵𝑧 , we take
into account that the magnetic field 𝐵𝑧 is somehow being generated by the wires that bring
the total current 𝐼 = 𝐽𝜋𝑅2 to the cell. In the worst case scenario, this suggests a magnetic
field of order 𝐵𝑧 ≈ 𝜇0𝐼/2𝜋𝑅 ≈ 𝜇0𝐽𝑅/2 (field at distance 𝑅 from a wire carrying a current 𝐼).
Alternatively speaking, in the worst case the vertical field is of the same order of magnitude
as the azimuthal magnetic field 𝐵𝜃 created by the current density (this azimuthal field is not
destabilizing, see H19). Using this estimate of 𝐵𝑧 and the numbers 𝜆𝑣𝑖𝑠𝑐 and 𝜆𝑣 = 𝜆𝑣/𝐽𝐵𝑧 ,
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we compute for each wave and for varying each cell radius the critical current density as

𝐽𝑐 ≈
√︄

−2𝜆𝑣𝑖𝑠𝑐

|𝜆𝑣 |𝜇0𝑅
(3.13)

Magnetic damping is also ignored here. The wave with the lowest 𝐽𝑐 defines the threshold.
For the LMBs of table 2, this is most often the (1, 1,−) wave (full lines) but (1, 1, +) waves are
also possible (dashed lines). In figure 12, we show this theoretical threshold current densities
𝐽𝑐 for the different LMBs as a function of 𝑅. We observe a power-law 𝐽𝑐 ≈ 𝑅−5/4 for large
𝑅. The Mg||Sb LMB clearly is the one that is most easily destabilised, closely followed by
the Ca| |Sb and Ca| |Bi cells. For 𝐽 = 3000Am−2, a typical value for the Mg||Sb battery, this
formula locates the domain of stability at 𝑅 < 0.49m.

4. Conclusion
In this article we have presented a new linear stability theory for the metal pad roll instability
in cylindrical LMBs, with three layers of stacked fluids. This theory extends the perturbative
approach of H19 to the case of three layers and has all the same characteristics. It is obtained
using perturbation methods, in non-shallow configurations and includes a precise model for
viscous and magnetic dissipation.
The stability theory correctly captures the growth rates of the rolling wave observed by

Weber et al. (2017b,a) in Mg| |Sb cells. Our theory reproduces the fact that different wave
modes, symmetrical and anti-symmetrical waves (1, 1,±) can be selected when Δ𝜌12/Δ𝜌23
is varied and shows that this is the consequence of a weak instability region that exists
near Δ𝜌12/Δ𝜌23 ≈ 1. This weak instability region is the result of the fact that the Lorentz
force can be destabilizing in top fluid layer but stabilizing in the bottom. This situation of
opposing power injection and withdrawal is clearly only possible with three-layers of fluid
and hence a particularity of the metal pad roll instability in batteries. According to our
model, the cylindrical equivalent of the square Na| |Bi cell of Tucs et al. (2018a) requires
much higher imposed magnetic fields to become unstable, a difference that may be due to
a different viscous damping model. Using our stability theory we can also estimate that the
critical magnetic field needed to destabilize a hypothetically large shallow 105A cell is of
order of 𝐵𝑧 = 0.1 − 1mT for several known LMB types. This critical magnetic field value
is comparable to that given by Tucs et al. (2018b) for rectangular 105A and is here uniquely
due to viscous dissipation. Finally, we have shown how our theory can produce stability
diagrams in a system size - current density plane. Such charts are useful to give a first order
estimate of the regime of stability of an LMB with a given size.
One interesting perspective of this study is the possibility to study the effectiveness of

passive control strategies. In industrial reduction cells, metal pad roll instability is avoided
by taking thicker electrolyte layers. Using our theory, we can study whether this would be
an effective control strategy in batteries too. From a numerical perspective, it would be
interesting to study the interplay of metal pad roll instability and swirling electro-vortex
flows (Bojarevics et al. 1989; Ashour et al. 2018; Herreman et al. 2021) that will also occur
whenever current is injected by thinner solid electrodes.

The computational ressources used to realize the simulations using SFEMaNS were
provided by GENCI-IDRIS (Grand Equipement National de Calcul Intensif), under the
allocation 2021-0254. Declaration of interest: we declare no conflict of interest.
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Appendix A. Special limits of the theory
It is easy to simplify the general theory in order to reach expressions valid in particular limits.
The shallow limit, where all three layers are very thin with respect to the wavelength (or 𝑅),
is particularly interesting for large scale shallow LMBs. The deep-shallow-deep limit is also
interesting, because the theoretical formulas are significantly simpler.

A.1. Shallow limit
All our theoretical formulas for 𝜔, 𝜖, 𝜆𝑣 , 𝜆𝑣𝑖𝑠𝑐 , 𝜆𝑣𝑣 can be written in a shallow limit for
which 𝑘𝐻𝑖 � 1. For all but the magnetic damping term 𝜆𝑣𝑣 it is sufficient to replace

sinh(𝑘𝐻𝑖) ≈ 𝑘𝐻𝑖 , cos(𝑘𝐻𝑖) ≈ 1 , tanh(𝑘𝐻𝑖) ≈ 𝑘𝐻𝑖 (A 1)

in the general formulas. We have not found significant simplifications in the resulting
formulas, so it makes no sense to rewrite explicit lengthy expressions for all quantities
in this shallow limit. For the magnetic damping term, we can use

𝜆𝑣𝑣 =
𝜔2

𝑔𝑘

(
𝜎1𝐵

2

Δ𝜌12 + 𝜖2Δ𝜌23

1
𝑘𝐻1

+ 𝜎3𝐵
2

Δ𝜌12 + 𝜖2Δ𝜌23

𝜖2

𝑘𝐻3

) (
−1
2
+ 𝑚

𝑘2𝑅2 − 𝑚2

)
(A 2)

We have used the shallow limit formulas to create the dashed lines in figure 10 that clearly
converge towards the general theory for the cylindrical equivalent cells of Tucs et al. (2018a).

A.2. Deep-shallow-deep limit
The theoretical formulas take particularly simple forms in the limit of shallow electrolyte
layer and deep top and bottom layers. Using

𝜌12 ≈ 𝜌1 +
𝜌2

𝑘𝐻2
, 𝜌23 ≈ 𝜌3 +

𝜌2

𝑘𝐻2
(A 3)

we find that 𝜔2± for the slow and fast branches reach the following leading order limits

𝜔2− ≈ Δ𝜌12Δ𝜌23 𝑔𝑘

𝜌2 Δ𝜌13
𝑘𝐻2 , 𝜔2+ ≈ Δ𝜌13 𝑔𝑘

𝜌1 + 𝜌3
= 𝜔213 (A 4)

Here we denote Δ𝜌13 = 𝜌3 − 𝜌1. The slow wave branch is gradually approaching zero as
𝑘𝐻2 → 0, whereas the rapid branch tends towards the dispersion relation of the two-layer
fluid system with liquid 1 above liquid 3. Along with these branches, we find the amplitude
ratios as

𝜖− ≈ −Δ𝜌12
Δ𝜌23

, 𝜖+ ≈ 1 + 𝑘𝐻2

(
𝜌1Δ𝜌23

𝜌2Δ𝜌13
− 𝜌3Δ𝜌12

𝜌2Δ𝜌13

)
(A 5)

As in Horstmann et al. (2018), the amplitude ratio of the fast waves 𝜖+ ≈ 1, which means
that upper and lower interfaces are similarly deformed. We need the 𝑂 (𝑘𝐻2) correction in
𝜖+ to compute the leading order dissipation-less growth rate that we find as

𝜆𝑣,− ≈ 𝑚

𝜅2𝑚𝑛 − 𝑚2
𝐽𝐵𝑧√
𝑔

1
√
𝐻2

Δ𝜌12 − Δ𝜌23

2
√︁
𝜌2Δ𝜌12Δ𝜌23Δ𝜌13

(A 6a)

𝜆𝑣,+ ≈ 𝑚

𝜅2𝑚𝑛 − 𝑚2
𝐽𝐵𝑧√
𝑔

√
𝑘

√︄
Δ𝜌13

𝜌1 + 𝜌3

𝜌1Δ𝜌23 − 𝜌3Δ𝜌12

𝜌2Δ𝜌
2
13

(A 6b)

These formulas showmore clearly that the dissipation-less growth rate can be very small, that
MPR-instability may be very weak in LMBs. In this deep-shallow-deep limit, slow waves are
always very weakly destabilised near Δ𝜌12/Δ𝜌23 = 1. Fast modes are weakly destabilised
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(b) (𝑅, 𝐻1, 𝐻2, 𝐻3) = (5, 7, 0.1, 7) cm

Figure 13: Comparison of deep-shallow-deep limit formulas for the dissipation-less
relative growth rate 𝜆𝑣/𝐽𝐵𝑧 to the general theory and for two different geometries, (a) the
cell of Horstmann et al. (2018), (b) a cell with taller metal zones and a thinner electrolyte

layer. Material properties are as in (3.11).

near Δ𝜌12/Δ𝜌23 = 𝜌1/𝜌3. Far away from these values, we see that 𝜆𝑣,+/𝜆𝑣,− ∼
√
𝑘𝐻2 � 1.

This suggests that slow - waves will most often be the more unstable ones, except in the
vicinity of Δ𝜌12/Δ𝜌23 = 1.
In figure 13, we compare the general theory to the deep-shallow-deep limit. We show the

relative dissipation-less growth rate |𝜆𝑣 |/𝐽𝐵𝑧 for the cell of Horstmann et al. (2018) with
variable 𝜌1 ∈ [500, 2950] kg m−3 and (𝜌2, 𝜌3) = (3000, 3500) kg m−3. In panel (a), we see
that in the original set-up with fluid layers of height (𝑅, 𝐻1, 𝐻2, 𝐻3) = (5, 4.5, 1, 4.5) cm
MPR-instability is not well modeled by this deep-shallow-deep limit. For taller top and
bottom layers and with a thinner electrolyte, for example (𝑅, 𝐻1, 𝐻2, 𝐻3) = (5, 7, 0.1, 7) cm,
the deep-shallow-deep limit is well adapted, see panel (b).
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