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The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few
exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differen-
tial equation approach. The present paper tries to facilitate the use of integral equations in dynamo research.
Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart
law, the integral equation approach has a number of practical advantages. The first advantage is its proven
numerical robustness and stability. The second and perhaps most important advantage is its applicability to
dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant
not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the
first general formulation and application of the integral equation approach to time-dependent kinematic dyna-
mos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic
field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary.
For the spherically symmetrica2 dynamo model it is shown how the general formulation is reduced to a
coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field
components. The integral equation formulation for spherical dynamos with general stationary velocity fields is
also derived. Two numerical examples—thea2 dynamo model with radially varyinga and the Bullard-
Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The
main advantage of the method is exemplified by the treatment of ana2 dynamo in rectangular domains.
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I. INTRODUCTION

Cosmic magnetic fields, including the fields of planets,
stars, and galaxies, result from the hydromagnetic dynamo
effect [1,2]. The last decades have seen tremendous progress
in the analytical and numerical treatment of magnetic field
generation in cosmic bodies. Recently, the hydromagnetic
dynamo effect has been validated experimentally in large
liquid sodium facilities in Riga and Karlsruhe[3–7].

The usual way to treat hydromagnetic dynamos numeri-
cally is within the differential equation approach. Supposing
the fluid velocity u to be given, the governing differential
equation is the induction equation for the magnetic fieldB,

] B

] t
= = 3 su 3 Bd +

1

m0s
DB, s1d

with m0 and s denoting the permeability of the free space
and the electrical conductivity of the fluid, respectively.
Equation(1) follows directly from pre-Maxwell’s equations
and Ohm’s law in moving conductors. Note that the mag-
netic field has to be divergence free:

= ·B = 0. s2d

In the case of vanishing excitations of the magnetic field
from outside the considered finite region, the boundary con-
dition for the magnetic field reads

B = Osr−3d as r → `. s3d

The induction equation(1) is sufficient to treatkinematic
dynamo modelsin which the backreaction of the self-excited
magnetic field on the flow is neglected. Such a simplification
is justified during the initial phase of self-excitation when the
magnetic field is weak. For stronger fields, one has to cope
with dynamically consistent dynamo modelswhich require
the simultaneous solution of the induction equation for the
magnetic field and the Navier-Stokes equation for the veloc-
ity. This saturation regime, however, will not be considered
in the present paper.

The spherical geometry of many cosmic bodies such as
planets and stars has simplified dynamo simulations in one
important respect: for the spherical case the boundary condi-
tions for the magnetic field can be reformulated separately
for every degree and order of the spherical harmonics, which
makes any particular treatment of the magnetic fields in the
exterior superfluous.

When it comes to dynamos in other than spherical geom-
etries, this pleasant situation changes. Then the correct han-
dling of the nonlocal boundary conditions becomes non-
trivial. Such a problem appears, e.g., in the numerical
simulation of the recent dynamo experiments that are of cy-
lindrical shape, but also in the simulations of galactic dyna-
mos. There are some ways to cope with this problem: one
can use simplified local boundary conditions(“vertical field
condition”) [8,9], one can embed the actual dynamo body
into a sphere with the region between the actual dynamo and
the surface of the sphere virtually filled with a medium of
lower electrical conductivity[10,11], or one can solve the
Laplace equation in the exterior and fit the solution at the
boundary to the solution in the interior[12], which is, how-
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ever, a tedious and time-consuming procedure. Note that the
application of local boundary conditions is usually paid with
a considerable loss of accuracy. For example, for the sake of
comparison we have applied the simplified vertical field con-
ditions for the simulation of the Riga dynamo experiment
and found, for the critical magnetic Reynolds number, a de-
viation of about 15% from the correct value.

The integral equation approach that we will establish in
the present paper is intended to change this unsatisfactory
situation concerning the handling of boundary conditions.
For the steady case and for infinite domains of homogeneous
conductivity, the integral equation approach was used in a
few previous papers[13–16]. The inclusion of boundaries,
again for the steady case, was already delineated in the book
of Roberts[17]. In Roberts’ own opinion([17], p. 74), how-
ever, this formulation did “. . . not appear, in general, to be
very useful.” In [18] we have tried to put this pessimistic
judgment into question. In particular, we have derived from
the general theory a system of one-dimensional integral
equations for a dynamo model with a spherically symmetric,
isotropic helical turbulence parametera in a finite sphere,
and we have rederived analytically the solution found by
Krause and Steenbeck[19] for the special case of constanta.
In [20] we have investigated the performance of numerical
schemes to solve these integral equations for steadya2 dy-
namos.

It should be pointed out that for the steady case a similar
approach had been established earlier under the label
“velocity-current-formulation” by Meir and Schmidt[21,22].
This approach had also the pronounced aim to circumvent
the numerical treatment outside the region of interest. How-
ever, the numerical focus of this work laid more on steady,
coupled magnetohydrodynamic(MHD) problems with small
magnetic Reynolds number than on dynamo problems.

In the present paper, we generalize the integral equation
approach for steady dynamos in finite domains to dynamos
with time-dependent magnetic fields. Note that in the follow-
ing “time-dependent” will only refer to the magnetic field,
whereas the dynamo source is always supposed to be station-
ary. Such a formulation is highly requested for a number of
problems that are related to the data analysis for the existing
and to the optimization of future dynamo experiments. For
example, in connection with the Riga dynamo experiment
there is the urgent need for an inverse problem solver in
order to reconstruct, from the wealth of measured magnetic
field data, the Lorentz force influenced sodium flow in the
saturation regime[23]. An efficient forward problem solver,
based on the integral equation approach, could represent an
essential ingredient of such an inverse problem solver. Fur-
ther applications are foreseeable in metallurgy and crystal
growth where a contactless determination of the flow veloc-
ity, based on the external measurement of induced magnetic
fields, would be highly desirable. There has been some the-
oretical and experimental progress towards such a contact-
less inductive flow measuring technique[24–27]. Presently,
the underlying inversion technique calls for its generalization
to time-dependent magnetic fields in order to mitigate the
remaining nonuniqueness which concerns the depth depen-
dence of the reconstructed velocity field.

There are various possibilities for the concrete formula-
tion of the integral equation approach. Here, in contrast to

earlier statements on this matter[16] that the use of the
Green’s function of the Helmholtz equation will lead to a
nonlinear eigenvalue equation, we present a linear formula-
tion of the eigenvalue problem. This makes the approach
more attractive for numerical treatment and, hence, repre-
sents an essential step for its applicability.

For the paradigmatic case of a time-dependent spherically
symmetric, isotropica2 dynamo we derive, starting from the
general formulation, a coupled system of two radial integral
equations which is solved numerically. The equivalence with
the results of a differential equation solver is made evident.
We also derive the coupled system of radial integral equa-
tions for spherical dynamos with general velocity fields and
treat numerically the well-known Bullard-Gellman model
within the new approach.

These examples in spherical geometry demonstrate the
equivalence of the integral equation approach with the dif-
ferential equation approach. The main advantage of the
former—its suitability for handling dynamo problems in ar-
bitrary domains—will then be exemplified by the treatment
of a simple dynamo in rectangular geometry. Extending our
recent work on steadya2 dynamos in such domains[20] to
the time-dependent case, we compute the growth rates and
the eigenfields in dependence ona and compare them with
the corresponding results for a spherical domain. First, we
find that the free decay is faster than in the spherical case.
However, for increasinga the growth rates of the leading
eigenmode of the cubic and “matchbox” dynamo both con-
verge to that of the spherical case. This is a physically inter-
esting result indicating that the boundary effects become less
important with increasinga.

II. GENERAL FORMULATION

Assume a stationary velocity field or a corresponding
mean-field dynamo source, acting in a finite domainD with a
boundaryS, surrounded by nonconducting space. For this
setting, we will derive the general form of the integral equa-
tion approach for time-dependent magnetic fields, generaliz-
ing the basic idea and the methods from the steady case
[18,20].

We start with the pre-Maxwell’s equations(the displace-
ment current can be skipped in the quasistationary approxi-
mation)

= 3 Esr ,td = −
] Bsr ,td

] t
, s4d

= ·Bsr ,td = 0, s5d

= 3 Bsr ,td = m0j sr ,td, s6d

whereBsr ,td is the magnetic field,Esr ,td the electric field,r
the position vector,t the time, andm0 the magnetic perme-
ability of the free space. The current densityj sr ,td satisfies
Ohm’s law
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j sr ,td = sfEsr ,td + Fsr ,tdg s7d

inside the dynamo domainD, and it vanishes outsideD.
Fsr ,td denotes the electromotive force(emf) usr d3Bsr ,td,
where usr d is the velocity of the fluid motion, which we
suppose to be stationary. In the framework of mean-field
electrodynamics(see, e.g.,[1]) Bsr ,td, j sr ,td, andFsr ,td, are
split into mean fields and fluctuating fields. ThenFsr ,td can
be fixed to the form

Fsr ,td = usr d 3 Bsr ,td + asr dBsr ,td − bsr d = 3 Bsr ,td,

s8d

whereusr d andBsr ,td now denote the mean velocity and the
mean magnetic field, respectively. The termasr dBsr ,td de-
scribes the emf due to the nonmirrorsymmetric part of the
turbulence(a effect), and the termbsr d= 3Bsr ,td describes
another effect which can be interpreted as a conductivity
decrease due to the turbulence(b effect).

The equations given so far, together with initial conditions
for B, define an initial value problem forBsr ,td which can
be combined into the form of Eq.(1). Together with the
requirements that there be no surface currents onS and that
Bsr ,td vanish at infinity, they allow one to determineBsr ,td
once the concrete dependence ofFsr ,td on Bsr ,td has been
fixed.

Under the condition thatu, a, andb in Eq. (8) only de-
pend on the positionr , we can search for modal solutions of
the form

Esr ,td = Esr delt, Bsr ,td = Bsr delt, Fsr ,td = Fsr delt,

j sr ,td = j sr delt, s9d

wherel is in general a complex constant. Then Maxwell’s
equations and Ohm’s law transform into

= 3 E = − lB, s10d

= ·B = 0, s11d

= 3 B = m0j , s12d

j = ssE + Fd. s13d

Hereafter, the symbolsB, E, j , andF denote the functions
which only depend on the positionr , but not on the timet.

Taking the curl of Eq.(10) and employing Eqs.(12) and
(13), we obtain the eigenvalue problem

lB = = 3 su 3 Bd +
1

m0s
DB ¬ LB, s14d

with the complex eigenfrequencyl, implying exponential
growth of B with the rate Resld.

An important point should be mentioned here that con-
cerns the intricate relation of the time-dependent solutions of
Eq. (1) and the time evolution of the eigenfunctions of Eq.
(14). The fact that the operatorL on the right-hand side
(RHS) of Eq. (14) is, in general, non-normal—i.e.,LL†

ÞL†L—implies that Eq.(14) does not in general have or-
thogonal eigenvectors, and the solution of the original time-

dependent induction equation(1) can show transient growth
even in the case that all individual eigenvalues of Eq.(14)
have negative real parts[28–30].

However, for t→`, the time evolution of the magnetic
field is still governed by the eigenvalue with the largest real
part. The determination of other than the leading eigenvalue
might also be important to understand qualitative spectral
changes, like that from steady to oscillatory behavior[31].
We are convinced that, despite the recent achievements in the
understanding of transient growth for non-normal operators,
there is still room for a modal analysis of the induction equa-
tion. This applies, in particular, to the correct handling of
dynamos in nonspherical domains, which is the main focus
of this paper.

Since the magnetic fieldB is divergence free, there exists
a magnetic vector potentialAsr d such that

B = = 3 A , s15d

which implies, together with Eq.(10), that

= 3 sE + lAd = 0. s16d

Therefore,E+lA has to be irrotational, and we can write

E + lA = − = w. s17d

Subsequently, Ohm’s law gets the form

j = ssF − lA − = wd. s18d

In the following, we will derive a system of integral equa-
tions that is equivalent to the differential equation formula-
tion (14). The starting point for the first integral equation is
the application of the Biot-Savart law on Eq.(12), leading to

Bsr d =
m0

4p
E

D

j sr 8d 3 sr − r 8d
ur − r 8u3

dV8. s19d

It is well known that thecurl operator in Eq.(12) is a left
inverse of the Biot-Savart operator when the currentj is
divergence free and tangent to the boundary of the domain
[32]. Both conditions are indeed fulfilled in our case. Insert-
ing Eq.(18) into Eq.(19) and using Gauss’s theorem, we get
the first integral equation

Bsr d =
m0s

4p
E

D

Fsr 8d 3 sr − r 8d
ur − r 8u3

dV8

−
m0sl

4p
E

D

Asr 8d 3 sr − r 8d
ur − r 8u3

dV8 −
m0s

4p
E

S

wss8dnss8d

3
r − s8

ur − s8u3
dS8, s20d

with nss8d denoting the outward directed unit vector at the
boundary points8 and dS8 denoting an area element at this
point. For some purposes it might be useful to express the
volume integrals in Eq.(20) in the form
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E
D

Fsr 8d 3 sr − r 8d
ur − r 8u3

dV8 =E
D

=r8 3 Fsr 8d

ur − r 8u
dV8 −E

S

nss8d

3
Fss8d

ur − s8u
dS8, s21d

and, using=3A =B,

E
D

Asr 8d 3 sr − r 8d
ur − r 8u3

dV8 =E
D

Bsr 8d
ur − r 8u

dV8 −E
S

nss8d

3
Ass8d
ur − s8u

dS8. s22d

For the steady casesl=0d Eq. (20) reduces to the form
given in [18], with one volume integral overB and one
boundary integral overw. The latter one would vanish only
in the case that the dynamo region is extended to infinity.
The time dependence introduces now a new volume integral
over the vector potentialA or another volume integral overB
and one boundary integral overA which cannot be reduced
to a simple expression inB. Before we focus on this point,
let us first derive the integral equation forw.

From Eq.(18) and the demand that the current has to be
divergence free,= ·j =0, we get a Poisson equation forw:

Dw = = · sF − lAd. s23d

Assuming a vacuum boundary condition which means that
the current must not leave the domainD, we obtain from
Green’s theorem the following boundary integral equation
for w:

p wsr d =
1

4p
E

D

Fsr 8d · sr − r 8d
ur − r 8u3

dV8

−
l

4p
E

D

Asr 8d · sr − r 8d
ur − r 8u3

dV8

−
1

4p
E

S

wss8dnss8d ·
r − s8

ur − s8u3
dS8, s24d

wherep=1 for pointsr insideD, p=1/2 forpointsr =s on S,
andp=0 for pointsr outsideD. Again, other expressions of
the volume integrals might be useful:

E
D

Fsr 8d · sr − r 8d
ur − r 8u3

dV8 = −E
D

= ·Fsr 8d
ur − r 8u

dV8

+E
S

nss8d ·
Fss8d

ur − s8u
dS8, s25d

E
D

Asr 8d · sr − r 8d
ur − r 8u3

dV8 = −E
D

= ·Asr 8d
ur − r 8u

dV8

+E
S

nss8d ·
Ass8d
ur − s8u

dS8. s26d

If we use the Coulomb gauge for the vector potential,
= ·A =0, we see that the volume integral in Eq.(26) van-
ishes.

For the steady case, Eqs.(20) and (24) with l=0 are
sufficient to determine the magnetic fieldB. But for the time-
dependent case presently under consideration, we have to
introduce the vector potentialA, at least at the boundary, for
completely formulating the problem. Necessarily we have to
establish another relation forA in order to make the problem
solvable. From Eq.(15) and Helmholtz’s theorem([33], p.
53) we can express the vector potential in one of the two
forms

Asr d =
1

4p
E

D

=r8 3 Bsr 8d

ur − r 8u
dV8

=
1

4p
E

D

Bsr 8d 3 sr − r 8d
ur − r 8u3

dV8 +
1

4p
E

S

nss8d

3
Bss8d

ur − s8u
dS8. s27d

The integral equations(20), (24), and (27) provide an-
other complete formulation of the problem forB. The main
advantage of this formulation is that one can avoid any treat-
ment of fields in the exterior ofD. The boundary conditions
are being fulfilled by solving the additional integral equa-
tions for w andA.

III. TEST CASE OF TIME-DEPENDENT SPHERICAL a2

DYNAMOS

A. Radial integral equation system

In this section, we exemplify the general integral equation
approach by applying it to a simple mean-field dynamo
model with a spherically symmetric, isotropic helical turbu-
lence parametera. In contrast to the original model with
constanta [1,19], whose advantage is the possibility of an
analytical treatment, we allow herea to vary with radial
coordinater. After giving some definitions, we will obtain
two coupled radial integral equations which will be used in
the next subsection for numerical treatment. Note that for the
steady case the corresponding derivation had been published
in [18].

As usual in dynamo theory, we split the divergence-free
magnetic fieldB into a poloidal and a toroidal part, denoted
by BP andBT. Since we use the Coulomb gauge= ·A =0, an
equivalent decomposition can also be applied to the vector
potentialA =AP+AT. We represent these fields by the defin-
ing scalarsS, T, SA, TA according to

BP = = 3 = 3 SS

r
rD, BT = = 3 ST

r
rD , s28d

AP = = 3 = 3 SSA

r
rD, AT = = 3 STA

r
rD . s29d

We introduce spherical coordinatesr ,u ,f and denote the
radius vector byr . The defining scalars and the electric po-
tential are expanded in series of spherical harmonics
Ylmsu ,fd—for example,
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Ssr,u,fd = o
l,m

slmsrdYlmsu,fd, s30d

and corresponding expressions forTsr ,u ,fd, SAsr ,u ,fd,
TAsr ,u ,fd, and wsr ,u ,fd, in which slmsrd are replaced by
tlmsrd, slm

A srd, tlm
A srd, andwlmsrd, respectively.

For the spherical harmonicsYlmsu ,fd the definition

Ylmsu,fd =Î2l + 1

4p

sl − md!
sl + md!

Plmscosudeimf s31d

is employed, withPlm denoting associated Legendre polyno-
mials. The summations in Eq.(30) are over all degreesl and
ordersm satisfying l ù0 and umu ø l; terms with l =0, how-
ever, are without interest in the following. SinceS, T, SA, TA,
andw are real, we havesl−m=slm

* and analogous relations for
tlm, slm

A , tlm
A , andwlm. The definition(31) implies the following

orthogonality relation for theYlmsu ,fd:

E
0

2p

dfE
0

p

sin u du Yl8m8
* su,fdYlmsu,fd = dll8dmm8.

s32d

A useful relation is

V Ylm = − lsl + 1dYlm, s33d

where the operatorV is defined by

Vf =
1

sin u

]

] u
Ssin u

] f

] u
D +

1

sin2u

]2f

] f2 . s34d

From Eqs.(28)–(30) we obtain, with the help of Eq.(33), the
components ofB,

Brsr,u,fd = o
l,m

lsl + 1d
r2 slmsrdYlmsu,fd,

Busr,u,fd = o
l,m
S tlmsrd

r sin u

] Ylmsu,fd
] f

+
1

r

dslmsrd
dr

] Ylmsu,fd
] u

D ,

Bfsr,u,fd = o
l,m
S−

tlmsrd
r

] Ylmsu,fd
] u

+
1

r sin u

dslmsrd
dr

] Ylmsu,fd
] f

D , s35d

and equivalent expressions for the components ofA, in
which slmsrd and tlmsrd are replaced byslm

A srd and tlm
A srd, re-

spectively.
Finally, we recall the expression for the inverse distance

between two pointsr and r 8,

1

ur − r 8u
= 4po

l=0

`

o
m=−l

l
1

2l + 1

r,
l

r.
l+1Ylm

* su8,f8dYlmsu,fd,

s36d

wherer. denotes the larger of the valuesr andr8, andr, the
smaller one.

Equipped with these preliminaries, the two coupled inte-
gral equations for the functionsslmsrd and tlmsrd can be de-

rived. This is done in Appendix A, both as a dimensional
reduction of the basic integral equation system and from the
radial differential equation system by using the Green’s func-
tion method. Here we give only the final form of the integral
equation system forslmsrd and tlmsrd:

slmsrd =
m0s

2l + 1FE0

r r8l+1

r l asr8dtlmsr8ddr8

+E
r

R rl+1

r8l asr8dtlmsr8ddr8 − lE
0

r r8l+1

r l slmsr8ddr8

− lE
r

R rl+1

r8l slmsr8ddr8G s37d

and

tlmsrd = m0sFasrdslmsrd −
l + 1

2l + 1
E

0

r dasr8d
dr8

slmsr8d
r8l

r l dr8

+
l

2l + 1
E

r

R dasr8d
dr8

slmsr8d
r l+1

r8l+1dr8

+
l + 1

2l + 1

r l+1

R2l+1E
0

R

r8l dasr8d
dr8

slmsr8ddr8

+
l

2l + 1

r l+1

R2l+1E
0

R

r8l+1tlmsr8ddr8

−
l

2l + 1
E

0

r r8l+1

r l tlmsr8ddr8 −
l

2l + 1
E

r

R rl+1

r8l tlmsr8ddr8

−
r l+1

Rl+1asRdslmsRdG . s38d

Notwithstanding the fact that the differential and integral
equation approaches are equivalent in a general sense, it
might be instructive to show this equivalence for our special
problem. Differentiating Eqs.(37) and (38) two times with
respect to the radial component the following relations can
be obtained:

lslm =
1

m0s
Fd2slm

dr2 −
lsl + 1d

r2 slmG + asrdtlm, s39d

ltlm =
1

m0s
Fd2tlm

dr2 −
lsl + 1d

r2 tlmG −
d

dr
Sasrd

dslm

dr
D

+
lsl + 1d

r2 asrdslm, s40d

tlmsRd =UR
dslmsrd

dr
U

r=R
+ lslmsRd = 0. s41d

As expected, these are the differential equations for the con-
sidered problem of radially varyinga for the time-dependent
case[31,34].
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B. Numerics

1. Discretization

In the previous section and in Appendix A, we have de-
rived the radial integral equations(37) and (38) governing
the time-dependent dynamo problem. In this subsection, we
develop a numerical method to solve this integral equation
system.

Let us introduce the following definitions:

x = r/R, Casxd = R2m0sasrd, l̃l = R2m0sll , s42d

whereC is the magnitude of the functionR2m0sa. In addi-
tion, we introduce the notations

Gssx,x0d =5−
1

2l + 1
x0

−lxl+1, x ø x0,

−
1

2l + 1
x0

l+1x−l, x ù x0,

s43d

Gtsx,x0d =5
1

2l + 1
sx0

l+1 − x0
−ldxl+1, x ø x0,

1

2l + 1
sxl+1 − x−ldx0

l+1, x ù x0,

s44d

Ḡtsx,x0d =5
l + 1

2l + 1
x0

l xl+1 +
l

2l + 1
x0

−l−1xl+1, x ø x0,

l + 1

2l + 1
x0

l xl+1 +
l

2l + 1
x−lx0

l , x ù x0.

s45d

Then, Eqs.(37) and (38) obtain the form

slmsxd = − CE
0

1

Gssx,x0dasx0dtlmsx0ddx0

+ l̃lE
0

1

Gssx,x0dslmsx0ddx0, s46d

tlmsxd = Casxdslmsxd − Cxl+1as1.0dslms1.0d

+ CE
0

1 dasx0d
dx0

slmsx0dḠtsx,x0ddx0

+ l̃lE
0

1

Gtsx,x0dtlmsx0ddx0

− CE
0

x

x−lx0
l dasx0d

dx0
slmsx0ddx0. s47d

ChoosingN equidistant grid pointsxi = iDx with Dx=1/N
and approximating the integrals by the extended trapezoidal
rule according to

E
0

1

fsxddx< o
i=1

N
1

2
ffsxi−1d + fsxidgDx, s48d

we obtain

l̃lo
j=1

N

slmsxjdGssxi,xjdDxcj

= slmsxid + Co
j=1

N−1

asxjdtlmsxjdGssxi,xjdcjDx, s49d

l̃l o
j=1

N−1

Gtsxi,xjdtlmsxjdDxcj = tlmsxid − Casxidslmsxid

+ Cxi
l+1as1.0dslms1.0d

− Co
j=1

N
dasxjd

dx
slmsxjdḠtsxi,xjdDxcj

+ Co
j=1

i

xi
−lxj

l dasxjd
dx

slmsxjdDxcj ,

s50d

where cN=0.5 andci =1.0 for i =1,2, . . . ,N−1. Equations
(49) and (50) can be written in the matrix form

l̃lVX = WX , s51d

with

X = „slmsx1d,slmsx2d, . . . ,slmsxNd,

tlmsx1d,tlmsx2d, . . . ,tlmsxN−1d…T,

Vi,j = Gssxi,xjdDxcj si, j = 1,2, . . . ,Nd,

Vi+N,j = 0 si = 1,2, . . . ,N − 1,j = 1,2, . . . ,Nd,

Vi,j+N = 0 si = 1,2, . . . ,N, j = 1,2, . . . ,N − 1d,

Vi+N,j+N = Gtsxi,xjdcjDx

si = 1,2, . . . ,N − 1,j = 1,2, . . . ,N − 1d,

Wi,j = dsi, jd si, j = 1,2, . . . ,Nd,

Wi,j+N = Gssxi,xjdDxcjasxjd

si = 1,2, . . . ,N, j = 1,2, . . . ,N − 1d,

Wi+N,j+N = dsi, jd si, j = 1,2, . . . ,N − 1d,

Wi+N,j = − C
dasxjd

dx
Ḡtsxi,xjdDxcj − Casxiddsi, jd

+ Cxi
l+1as1.0dds j ,Nd + Cxi

−lxj
l dasxjd

dx
DxcjHsi − jd

si = 1,2, . . . ,N − 1,j = 1,2, . . . ,Nd, s52d

where the functionsdsi , jd andHsi − jd are defined as

dsi, jd = H0, i Þ j ,

1, i = j ,

and
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Hsi − jd = H1, i ù j ,

0, i , j .

Note that Eq.(51) is a linear generalized eigenvalue prob-
lem. By multiplying both sides of Eq.(51) by the inverse of
the matrix V, we can convert it to the following standard
eigenvalue problem:

V−1WX = l̃lX . s53d

This eigenvalue problem can be solved by standard numeri-
cal routines. First, the matrixV−1W is reduced to the Hes-
senberg form; then, theQR algorithm can be employed to

obtain the eigenvaluel̃l.

2. Numerical results

In this subsection, we illustrate the numerical perfor-
mance of the integral equation approach formulated in this
paper by a few examples for the functionsasxd.

Let us start with the caseasxd=0, which corresponds to a
pure field decay within a conducting sphere. For this case,

the eigenvaluesl̃l are known from quasianalytic calculations
[1]. In Table I(for l =1) and Table II(for l =2) we have listed
the numerical results of the integral equation solver for the
eigenmodes with increasing radial wave numbersn
=1, . . . ,4, together with the analytical results. From these
tables it becomes obvious that even for a few grid numbers
robust results can be obtained. In Figs. 1 and 2 we have
plotted the relative errors of the results in dependence on the
used number of grid pointsN. As is typical for integral equa-

tions of that kind[20], the relative error decreases likeN−2.
Another quasianalytic result exists for the steady case[1]:

for l =1 andC=4.493 409 5 orl =2 andC=5.763 459 3 we
know that the first eigenvalues have to be zero. Table III
shows the results of the integral equation solver, again forl
=1 and l =2, but only forn=1. The convergence of the re-
sults, which is again,N−2, is depicted in Fig. 3.

Now, we turn to a more complicated case. It corresponds
to the profile asxd=Cs−21.46+426.41x2−806.73x3

+392.28x4). The choice of this somewhat strange function is
motivated by the fact that it is an example of a proper oscil-
latory a2 dynamo[31]. In Fig. 4 we show the results of the
integral equation solver for the casel =1 andn=1, . . . ,7. We
see that the spectral dependence onC (Fig. 4) is very com-
plex, with merging and splitting points of neighboring
branches at which nonoscillatory solutions turn into oscilla-
tory solutions and vice versa. The computation was done
with a grid number ofN=128, and the result is basically
identical with that of a sophisticated differential equation
solver[31]. Hence, Fig. 4 might serve as a striking example
that the integral equation approach works satisfactorily also
in case that complex eigenvalues appear.

TABLE I. Comparison of the calculated growth rates and the
analytic ones for the free decay caseasxd=0. The degree of the
spherical harmonics isl =1. n=1, . . . ,4 correspond to modes with
increasing radial wave numbern. The last row shows the analytic
results. The other rows express the numerical results obtained by
the integral equation approach for different grid numbersN.

N n=1 n=2 n=3 n=4

8 −9.79494 −37.71179 −79.61435 −129.36969

16 −9.85079 −39.02608 −86.41265 −150.20904

32 −9.86485 −39.36475 −88.21583 −155.94894

64 −9.86844 −39.44979 −88.67356 −157.42004

128 −9.86933 −39.47085 −88.78596 −157.78870

Analytic −9.86960 −39.47842 −88.82644 −157.91367

TABLE II. Same as Table I, but forl =2.

N n=1 n=2 n=3 n=4

8 −19.87668 −55.87647 −103.28617 −155.45810

16 −20.11100 −58.68925 −114.71107 −186.07856

32 −20.17073 −59.42935 −117.83333 −194.82947

64 −20.18561 −59.61664 −118.63189 −197.09552

128 −20.18911 −59.66311 −118.83366 −197.66728

Analytic −20.19073 −59.67951 −118.89986 −197.85780

FIG. 1. Relative error of the numerically determined eigenval-
ues for the free decay case,C=0, l =1, n=1, . . . ,4. The conver-
gence behaves likeN−2.

FIG. 2. Same as Fig. 1, but forl =2.
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IV. GENERAL VELOCITY FIELDS IN SPHERICAL
GEOMETRY

A. Radial integral equation system

In this section the Green’s function method from Appen-
dix A 2 is applied to convert the induction equation for gen-
eral velocity fields in a unit sphere to the integral equation
system. In dimensionless form, Eq.(1) can be rewritten as
follows:

] B

] t
= Rm = 3 su 3 Bd + =2B, s54d

whereRm is the magnetic Reynolds number.u andB may be
expanded into the following series[35]:

u = o
a

sta + sad, s55d

B = o
b

sTb + Sbd, s56d

where

ta = = 3 fertasr,tdYasu,wdg, s57d sa = = 3 = 3 fersasr,tdYasu,wdg, s58d

etc. From here on,Ya denote thes2a+1d surface harmonics
Pama

sudsinsmawd, Pama
sudcossmawd sma=0, . . . ,ad, where

Pama
is a Legendre function with Neumann normalization

and Pa0 the Legendre polynomial. Similarlysa is an abbre-
viation for sa

ma, etc. The summations in Eqs.(55) and(56) are
over cosine and sine contributions,a=1,2,3, . . . ;ma

=0, . . . ,a; and similarly forb ,mb. Substituting Eqs.(55) and
(56) into Eq. (54), Bullard and Gellman[35] derived the
spectral form of Eq.(54) as

]2Sg

] r2 −
] Sg

] t
−

gsg + 1d
r2 Sg =

Rm

r2 o
a,b

fstaSbSgd + ssaTbSgd

+ ssaSbSgdg, s59d

TABLE III. Convergence of the first eigenvaluesn=1d to zero in
the cases:C=4.493 409 5,l =1 andC=5.763 459 3,l =2. The nor-
malization of the errors is done with the growth rates atC=0, which
arel1sC=0d=−9.8696 andl2sC=0d=−20.1907.

l N=8 N=16 N=32 N=64 N=128

1 0.19836 0.04971 0.01249 0.00355 0.00052

2 0.58527 0.14903 0.03740 0.01010 0.00072

FIG. 3. Convergence of the first eigenvaluesn=1d to zero in the
cases:C=4.493 409 5,l =1 andC=5.763 459 3,l =2. The normal-
ization of the error is done with respect to the growth rates atC
=0 which arel1=−9.8696 andl1=−20.1907.

FIG. 4. Special caseasxd=Cs−21.46+426.41x2−806.73x3

+392.28x4d. Growth rates and frequencies for the eigenfunctions
with sl =1,n=1, . . . ,7d. The number of grid points wasN=128.
Note the merging and splitting points of the spectrum, indicating
transitions from nonoscillatory to oscillatory modes and vice versa.
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]2Tg

] r2 −
] Tg

] t
−

gsg + 1d
r2 Tg =

Rm

r2 o
a,b

fstaTbTgd + staSbTgd

+ ssaTbTgd + ssaSbTgdg, s60d

where

staSbSgd = c1taSb,

ssaTbSgd = c2saTb,

ssaSbSgd = c3sa

] Sb

] r
+ c4

] sa

] r
Sb,

staTbTgd = c5taTb,

staSbTgd = c6ta

] Sb

] r
+ c7S ] ta

] r
−

2ta

r
DSb,

ssaTbTgd = c8sa

] Tb

] r
+ c8S ] sa

] r
−

2sa

r
DTb + c9

] sa

] r
Tb,

ssaSbTgd = c10sa

]2Sb

] r2 + c11
] sa

] r

] Sb

] r
+ c12

sa

r

] Sb

] r

+ c13S ]2sa

] r2 −
2

r

] sa

] r
DSb. s61d

The constantsci in Eq. (61) are defined in the Appendix B.
By the same Green’s functions method as in Appendix A,

and using the definitions forGssr ,r0d, Gtsr ,r0d there, the dif-
ferential equations system(59) and(60) can be converted to
the following integral equations system:

Sgsrd = o
ab

RmE
0

1 Gssr,r0d
r0

2 Fc1tasr0dSbsr0d + c2sasr0dTbsr0d + c3sasr0d
dSbsr0d

dr0
+ c4

dsasr0d
dr0

Sbsr0dGdr0 + lE
0

1

Gssr,r0dSgsr0ddr0,

s62d

Tgsrd = o
ab

RmE
0

1 Gtsr,r0d
r0

2 Fc5tasr0dTbsr0d + c6tasr0d
dSbsr0d

dr0
+ c7Sdtasr0d

dr0
−

2tasr0d
r0

DSbsr0d

+ c8sasr0d
dTbsr0d

dr0
+ c8Sdsasr0d

dr0
−

2

r0
sasr0dDTbsr0d + c9

dsasr0d
dr0

Tbsr0d + c10sasr0d
d2Sbsr0d

dr0
2 + c11

dsasr0d
dr0

dSbsr0d
dr0

+ c12
sasr0d

r0

dSbsr0d
dr0

+ c13Sd2sasr0d
dr0

2 −
2

r0

dsasr0d
dr0

DSbsr0dGdr0 + lE
0

1

Gtsr,r0dTgsr0ddr0. s63d

Strictly speaking, this is an integro-differential equation system which could be used for numerical analysis. If one would insist
on having a pure integral equation system, one could employ integration by parts in order to obtain

Sgsrd = o
ab

RmFE
0

1

Gssr,r0dF1sr0dSbsr0ddr0 +E
0

1

Gssr,r0dF2sr0dTbsr0ddr0 +E
0

1 ] Gssr,r0d
] r0

F3sr0dSbsr0ddr0

−
c3

2g + 1
rg+1sas1.0dSbs1.0dG + lE

0

1

Gssr,r0dSgsr0ddr0, s64d

Tgsrd = o
ab

RmFE
0

1

Gtsr,r0dF4sr0dTbsr0ddr0 +E
0

1

Gtsr,r0dF5sr0dSbsr0ddr0 +E
0

1 ] Gtsr,r0d
] r0

F6sr0dSbsr0ddr0

+E
0

1 ] Gtsr,r0d
] r0

F7sr0dTbsr0ddr0 − c10r
g+1sas1.0dSbs1.0d +

c10

r2 SasrdSbsrdG + lE
0

1

Gtsr,r0dTgsr0ddr0, s65d

with
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F1 = c1
ta

r0
2 − c3

d

dr0
Ssa

r0
2D + c4

1

r0
2

dsa

dr0
,

F2 = c2
sa

r0
2 ,

F3 = − c3
sa

r0
2 ,

F4 = c5
ta

r0
2 − c8

d

dr0
Ssa

r0
2D + c8

1

r0
2Sdsa

dr0
−

2

r0
saD + c9

1

r0
2

dsa

dr0
,

F5 = − c6
d

dr0
S ta

r0
2D + c7

1

r0
2Sdta

dr0
−

2

r0
taD + c10gsg + 1d

sa

r0
4

+ c10
d2

dr0
2Ssa

r0
2D − c11

d

dr0
S 1

r0
2

dsa

dr0
D − c12

d

dr0
Ssa

r0
3D

+ c13
1

r0
2Sd2sa

dr0
2 −

2

r0

dsa

dr0
D ,

F6 = − c6
ta

r0
2 + 2c10

d

dr0
Ssa

r0
2D − c11

1

r0
2

dsa

dr0
− c12

sa

r0
3 ,

F7 = − c8
sa

r0
2 .

The discretization of this integral equation system is done
along the lines described in Sec. III B 1.

B. Numerical example: The Bullard-Gellman model

In the following, we will test the suitability of the integral
equation approach to the simulation of large-scale velocity
fields for a particular dynamo model. In 1954, Bullard and
Gellman[35] studied the flow structure

u = s2
2c + 5t1

0, s66d

where

s2
2csrd = r3s1 − rd2, s67d

t1
0srd = r2s1 − rd, s68d

claiming that this flow acts indeed as a dynamo. Later, using
higher spatial resolution, Gibson, Roberts, and Scott,[36]
and Dudley and James[37] falsified this result, showing that
there is no dynamo up to a magnetic Reynolds number of 80.

Here we treat the Bullard-Gellman model within the
framework of the integral equation approach.

In Fig. 5 we plot the real and imaginary parts of the first
eigenvalue of the D1 solution(in the terminology of Dudley
and James) for the Bullard-Gellman dynamo model in de-
pendence on the magnetic Reynolds number. The truncation
degree isL=9, and the number of radial grid points isN
=75. This is essentially the same curve as published in[37]
where a truncation degreeL=12 and a number of grid points
of N=100 had been used, however.

In Table IV we have compiled some results concerning
the convergence of our method and the method of Dudley
and James. ForRm=50 (where no data are available from
Dudley and James) we see a reasonable convergence of the
real part but a slow convergence of the imaginary part. The
latter might be due to the fact that we are not far from the
transition point to oscillatory behavior where the imaginary
part is sensible to changes in the grid number. ForRm=80
we have to concede that the convergence in our case is
slower than in the differential equation method of Dudley
and James.

A similar conclusion can be drawn from the treatment of
other models(Lilley model, modified Lilley model). Al-
though our method yields essentially the same results as the
differential equation approach, it seems worth to look for
refined numerical methods to solve the integral eigenvalue
equation.

TABLE IV. Convergence of the integral equation approach(IEA) and the Dudley and James method(DJ).
We show the dependence ofl on the radial grid numberN for Rm=50 andRm=80 using a truncation degree
L=9. The interpolation in the IEA case is done with a fit of the date to a functiona+bN−2. Dudley and James
had used Richardson extrapolation based on the values forN=75,100,125.

N=50 N=75 N=100 N=125 Extrapolation

IEA Rm=50 −23.50+4.97i −22.97+4.03i −22.76+3.66i −22.63+3.34i

IEA Rm=80 −29.35+9.46i −27.70+7.72i −26.95+6.98i −26.51+6.57i −26.10+6.26i

DJ Rm=80 −26.32+6.01i −26.33+6.04i −26.33+6.05i −26.34+6.06i

FIG. 5. Real and imaginary parts of the first eigenvalue for the
Bullard-Gellman dynamo model in dependence on the magnetic
Reynolds number. The truncation degree isL=9, and the number of
radial grid points isN=75.
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V. GENERAL NUMERICAL SCHEME AND ITS
APPLICATION TO RECTANGULAR DYNAMOS

In order to demonstrate the applicability of the integral
equation approach, we consider here the case of an arbitrary
geometry. First, we delineate the general numerical scheme;
then, we will apply it to dynamos in rectangular geometry.
Needless to say, this geometry is only of academic interest,
but it illustrates nicely the main advantage of the integral
equation approach.

A. General numerical scheme

Here we delineate the general framework for the numeri-
cal solution of the coupled equations(20), (24), and(27). Let
us assume certain spatial discretizations of the magnetic field
and the vector potential in the volume of the dynamo and of

the electric potential at the boundary. Then, Eq.(20) may be
rewritten in the form

Bi = LikBk + lPijAj + Nilwl , s69d

whereBi andAj denote the degrees of freedom of the mag-
netic field and the vector potential in the volume of the dy-
namo, whilewl andAn denote the degrees of freedom of the
electric potential at the boundary. Here and in the following
we use Einstein’s summation convention, and we reserve the
indicesi , j ,k for magnetic field and vector potential degrees
of freedom in the volume of the fluid, whereas the indices
l ,m,n are reserved for the electric potential degrees of free-
dom at the boundary of the fluid.

For any given dynamo source, any shape of the dynamo
domain, and any concrete form of the discretization, the ma-
tricesL , N, andP in Eq. (69) can easily be derived from Eq.
(20). It is worthwhile noting that onlyL depends on the

FIG. 6. Magnetic eigenfields belonging to the three lowest eigenvalues(ordered from top to bottom) of thea2 dynamo in a “matchbox”
with a sidelengths ratio of 1:0.8:0.6. The corresponding values ofC8 are 0, 1.943, and 4.593(from left to right). The latter valueC8
=4.593 is the critical value for the first eigenmode. The gray scale of the field lines indicates the field strength.
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dynamo source(u or a), whereasN and P depend only on
the geometry of the dynamo domain and the discretization
details.

Similarly, the discretization of the boundary integral equa-
tion (24) (for the case thatr is on the surfaceS) leads to

0.5 wl + Elmwm = HlkBk + lDljAj s70d

or

Glmwm = HlkBk + lDljAj , s71d

whereGlm=0.5 dlm+Elm. Again one should note that onlyH
depends on the dynamo source, whereasG and D depend
only on the geometry of the dynamo domain and the discreti-
zation details. The discretization of Eq.(27) gives

Aj = QjkBk, s72d

with Q depending solely on the geometry.
Substituting Eq.(72) into Eq. (71) yields

wm = sG−1dmlHlkBk + lsG−1dmlDljQjkBk. s73d

However, for the inversion of the matrixG some care is
needed. Basically,G is a singular matrix, reflecting the fact
that the electric potential is determined only up to a constant.
Accidently, it may happen that this singularity is weakened
by inaccuracies due to the discretization. Nevertheless, one
should be careful with the inversion. A convenient method to
deal with the inversion is the application of thedeflation
method[38,39]. In the following, we will simply assume that
the inverse ofG has been found in an appropriate manner.

FIG. 7. Electric potential and magnetic vector potential at the box boundary belonging to the three lowest eigenvalues(ordered from top
to bottom) of the a2 dynamo in a box with sidelengths ratio 1:0.8:0.6. The corresponding values ofC8 :0, 1.943, and 4.593(from left to
right).
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After inserting Eqs.(72) and(73), Eq. (69) is transformed
to

Bi = LikBk + lPijQjkBk + NimsG−1dmlHlkBk

+ lNilsG−1dlmDmjQjkBk. s74d

Evidently, the electric potential at the boundary and the mag-
netic vector potential in the volume served only as auxiliary
quantities in order to ensure the right boundary conditions.
From the numerical viewpoint it is important to take notice
of the following: for the accurate solution of the boundary
integral equation(73) for a dynamo in a given domain it may
be advisable to use a fine discretization of the boundary with
a large number of grid points. Hence, the corresponding in-
version of the matrixG might be numerically expensive.
However, for a given geometry this inversion is needed only
once. Finally, after carrying out the matrix multiplications
N ·G−1·H and N ·G−1·D ·Q in Eq. (74) one ends up with a
matrix of the ordersNB,NBd where NB denotes the total
number of all magnetic field degrees of freedom.

Now, Eq. (74) can be rewritten in the following form:

fdik − Lik − NimsG−1dmlHlkgBk

= lsPijQjk + NilsG−1dlmDmjQjkdBk. s75d

This is a generalized linear matrix eigenvalue problem in
which only the magnetic field components remain. The nu-
merical solution of the arising linear generalized eigenvalue
equation(75) yields the eigenvaluesl, comprising as the real
part the growth rate and as the imaginary part the frequency
of the dynamo.

B. Application to rectangular dynamos

In the following we will apply the general numerical
scheme toa2 dynamos in rectangular geometry. Although
this particular geometry is only of limited practical interest,
it serves perfectly to illustrate the capabilities of our method.

More concretely, we will consider a cube and a “match-
box” with a side length’s ratio of 1.0:0.8:0.6. In order to
compare the results with the spherical pendant we choose a
length scale such that we get the same volume as the unit
sphere. That means, for the cube we use a side length of
Î34p /3=1.612, and for the “matchbox” we use the longest
side length as 2.0588. The domain is divided into 103 smaller
rectangular boxes, with each face divided into 102 rectangles.
For the steady case this problem has been treated in[20], and
most of the details of the integral discretization can be found
there. The additional terms related to the time-dependence
are discretized in close analogy.

Using the code for the steady problem, in[20] we found
the following critical values ofC8ªm0sa for the cubic case,
the threefold degenerated critical value isC8=4.599; for the
matchbox the three first critical values areC18=4.593, C18
=4.758, andC18=4.793(note that hereC8 refers to a box of
the same volume as the unit sphere, whereas in[20] they
refer to the cube of side length 2 and to a matchbox with the
longest side equal to 2).

For the matchbox, we have visualized in Fig. 6 the mag-
netic field for the three first eigenvalues at the valuesC8=0,
C8=1.943, and at the critical valueC8=4.593. The corre-
sponding electric potentials and vector potentials at the sur-
face of the matchbox are shown in Fig. 7.

Looking at the free decay caseC8=0, one can see a quite
similar poloidal field structure as is well known in the spheri-
cal case. For increasingC8 the magnetic field structure be-
comes more and more tangled and helical. The three eigen-
vectors correspond to three different positions of the dipolar
axis. As expected, the magnetic field structure at the critical
valueC8=4.593 is the same as published in[20].

In Fig. 8 we plot now the dependence of the growth ratel
on C8. First we see that the free decay is faster than in the
spherical case. However, for increasinga the growth rate of
the leading eigenmode of both the cubic and the matchbox
dynamo converges to that of its spherical pendant. This is a
physically interesting result indicating that the boundary ef-
fects become less important with increasinga.

VI. REMARKS AND CONCLUSIONS

We have established the integral equation approach to
time-dependent kinematic dynamos, with stationary dynamo
sources, in arbitrary domains. This approach is based on the
Biot-Savart law. The main advantage of the method is its
suitability to handle dynamos in arbitrary domains. The ne-
cessity to solve the Laplace equation in the exterior of the
dynamo domain is circumvented by the(implicit) solution of
boundary integral equations for the electric potential and the
magnetic vector potential.

It should be noted that we have worked out only one
possible form of the integral equation approach which results
in a linear eigenvalue problem. Another form could start
from rewriting Eq.(18) into the form of a Helmholtz equa-
tion for the vector potential

DA − m0slA = m0ssF − = wd. s76d

Then, the pendant to Eq.(20) would read

FIG. 8. Dependence of the eigenvaluel on C8 for the sphere,
the cube, and the matchbox. For the sphere and the cube, the eigen-
value is threefold degenerated. For the matchbox, the degeneration
is lifted. The length scale for the cube and the matchbox is chosen
in such a way that their volume is equal to the volume of the unit
sphere. Note the convergence of the leading eigenvalue for all three
geometries with increasingC8.
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Bsr d =
m0s

4p
E

D

Fsr 8d 3 sr − r 8d
ur − r 8u3

3expskur − r 8uds1 − kur − r 8uddV8

−
m0s

4p
E

S

wss8dnss8d
r − s8

ur − s8u3

3expskur − r 8uds1 − kur − r 8uddS8, s77d

with

k = Îlm0s. s78d

Without going into the details of such a formulation(we skip
here the equations for the electric potential and the vector

potential at the boundary), we see immediately that we end
up with a nonlinear eigenvalue equation for the eigenvaluel.
It would be interesting to compare the numerical perfor-
mance of such a formulation with the present one.

We plan to use our formulation for a number of dynamo
problems, in particular problems which are connected with
the design and optimization of new dynamo experiments and
with the velocity reconstruction problem for the existing ex-
periments.
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APPENDIX A: DERIVATION OF THE RADIAL INTEGRAL EQUATIONS FOR THE a2-DYNAMO

1. Dimensional reduction of the integral equation system

a. Radial integral equation for slm„r…

Taking the scalar product of both sides of Eq.(20) with the unity vectorer we obtain

Bsr d ·er =
m0s

4p
E

D

fasr8dBsr 8d − lAsr 8dg 3 sr − r 8d
ur − r 8u3

·er dV8 −
m0s

4p
E

S

wss8dnss8d 3
r − s8

ur − s8u3
·er dS8

=
m0s

4p
E

D

=r8 3 fasr8dBsr 8d − lAsr 8dg

ur − r 8u
·er8

r8

r
dV8. sA1d

In the derivation of the last step in Eq.(A1) we have expresseder under the integrals bysr −r 8d / r +sr8 / rder8, and we have used
the fact that the triple product vanishes whennss8d ander8 coincide forr 8=s8.

By virtue of Eq.(15), Eq. (A1) becomes

Bsr d ·er =
m0s

4p
E

D

=r8 3 fasr8dBsr 8dg

ur − r 8u
·er8

r8

r
dV8 −

m0sl

4p
E

D

Bsr 8d
ur − r 8u

·er8
r8

r
dV8. sA2d

Noting that in Eq.(A2),

=r8 3 fasr8dBsr 8dg = − Bsr 8d 3 =r8asr8d + asr8d=r8 3 Bsr 8d, sA3d

we see that the scalar product of the first term on the right-hand side wither8 vanishes since the gradient ofasr8d points in the
r 8 direction, too. From Eqs.(34) and (35) we obtain

f=r8 3 Bsr 8dg ·er8 = o
l8,m8

l8sl8 + 1d
r82 tl8m8sr8dYl8m8su8,f8d. sA4d

Taking Eqs.(A1), (A3), and(A4) together we find

o
l,m

lsl + 1d
r2 slmsrdYlmsu,fd =

m0s

4pr
E

D

asr8do
l8m8

l8sl8 + 1d
r82 tl8m8sr8dYl8m8su8,f8d

r8

ur − r 8u
dV8

−
m0sl

4pr
E

D
o
l8m8

l8sl8 + 1d
r82 sl8m8sr8dYl8m8su8,f8d

r8

ur − r 8u
dV8. sA5d

After expressing the inverse distance according to Eq.(36), integrating on the right-hand side of Eq.(A5) over the primed
angles, multiplying then both sides of Eq.(A5) with Ylm

* su ,fd, and integrating over the nonprimed angles we obtain the first
integral equation of our problem in the form

slmsrd =
m0s

2l + 1FE0

r r8l+1

r l asr8dtlmsr8ddr8 +E
r

R rl+1

r8l asr8dtlmsr8ddr8 − lE
0

r r8l+1

r l slmsr8ddr8 − lE
r

R rl+1

r8l slmsr8ddr8G . sA6d
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b. Electric potential at the boundary

For the determination of the electric potential at the boundary it is convenient to start from Eq.(24) for pointsr outsideD.
As for the last boundary integral in Eq.(24) we have

1

4p
E

S

wss8dnss8d ·
r − s8

ur − s8u3
dS8 =

1

4p
E

S

wss8d
]

] s8

1

ur − s8u
dS8

=E
S
o
lm

wlmsRdYlmsu8,f8do
l8m8

1

2l8 + 1

]

] s8

s8l8

r l8+1
Yl8m8

* su8,f8dYl8m8su,fddS8 sA7d

and thus

lim
r→s

1

4p
E

S

wss8dnss8d ·
r − s8

ur − s8u3
dS8 = o

lm

l

2l + 1
wlmsRdYlmsu,fd. sA8d

For the evaluation of the volume integrals in Eq.(24) we can make the second one vanish by means of the Coulomb gauge
= ·A. For the first one, we use the alternative formulation Eq.(25). TakingBr from Eq. (35), we find

E
D

=r8 · fasr8dBsr 8dg

ur − r 8u
dV8 =E

D

dasr8d
dr8

o
l8m8

l8sl8 + 1d
r82 sl8m8sr8dYl8m8su8,f8d

1

ur − r 8u
dV8 sA9d

and thus

lim
r→s

1

4p
E

D

=r8 · fasr8dBsr 8dg

ur − r 8u
dV8 = o

lm

lsl + 1d
2l + 1

Ylmsu,fdE
0

R r8l

Rl+1

dasr8d
dr8

slmsr8ddr8. sA10d

Analogously, we obtain, for the remaining boundary integrals in Eq.(24),

lim
r→s

1

4p
E

S

nss8d ·
ass8dBss8d − lAss8d

ur − s8u
dS8 = o

lm

lsl + 1d
2l + 1

1

R
fasRdslmsRd − lslm

A sRdgYlmsu,fd. sA11d

Evaluating now Eq.(24) for r →s with the help of Eqs.(A8), (A10), and(A11) we find

wlmsRd = − sl + 1dE
0

R r8l

Rl+1

dasr8d
dr8

slmsr8ddr8 +
l + 1

R
fasRdslmsRd − l slm

A sRdg. sA12d

This expression forwsRd will later be needed in the integral equation fortlmsrd.
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c. Vector potential at the boundary

From Eq.(27) and the fact that the curl of the magnetic
field vanishes outside ofD, we obtain

E
D

=r8 3 Bsr 8d

ur − r 8u
dV8 =E

D+D8

=r8 3 Bsr 8d

ur − r 8u
dV8, sA13d

whereD8 denotes the outside region ofD. Note that

=r8 3
Bsr 8d

ur − r 8u
= =r8

1

ur − r 8u
3 Bsr 8d +

1

ur − r 8u
=r8 3 Bsr 8d.

sA14d

The application of this equation on the right-hand side of Eq.
(A13) leads to

E
D

=r8 3 Bsr 8d

ur − r 8u
dV8 =E

D+D8
=r8 3

Bsr 8d
ur − r 8u

dV8

−E
D+D8

=r8
1

ur − r 8u
3 Bsr 8ddV8.

sA15d

Applying Gauss’ theorem, we have

E
D

=r8 3 Bsr 8d

ur − r 8u
dV8 =E

S̀

nss8d 3
Bsr 8d

ur − r 8u
dS8

−E
D+D8

r − r 8

ur − r 8u3
3 Bsr 8ddV8.

sA16d

Equation(3) allows us to conclude that the surficial integra-
tion on the RHS of this equation vanishes. Therefore, after
taking the scalar product of both sides of Eq.(A16) with the
unit vectorer, we obtain

E
D

=r8 3 Bsr 8d

ur − r 8u
·erdV8 = −E

D+D8
=r8

1

ur − r 8u

3 Bsr 8d ·er8
r8

r
dV8. sA17d

In the derivation of this equation, the relationer =sr −r 8d / r
+sr8 / rder8 has been used again. Applying Eq.(A14) again
we have

E
D

=r8 3 Bsr 8d

ur − r 8u
·erdV8 =E

D

=r8 3 Bsr 8d

ur − r 8u
·er8

r8

r
dV8

−E
D+D8

=r8 3
Bsr 8d

ur − r 8u
·er8

r8

r
dV8.

sA18d

The second term on the RHS of Eq.(A18) can be shown to
vanish, so we conclude that

Asr d ·er =
1

4p
E

D

=r8 3 Bsr 8d

ur − r 8u
·er8

r8

r
dV8. sA19d

Hence we obtain

slm
A srd =

1

2l + 1SE0

r r8l+1

r l tlmsr8ddr8 +E
r

R rl+1

r8l tlmsr8ddr8D .

sA20d

Particularly, whenr =R in the above equation, we have

slm
A sRd =

1

2l + 1
E

0

R r8l+1

Rl tlmsr8ddr8. sA21d

As we will see, there is no need to calculate the correspond-
ing expression fortlm

A srd.

d. Radial integral equation for tlm„r…

We take now thecurl of both sides of Eq.(20), thus obtaining

=r 3 Bsr d =
m0s

4p F=r 3 =r 3 E
D

asr8dBsr 8d − lAsr 8d
ur − r 8u

dV8 − =r 3 E
S

wss8dnss8d 3
r − s8

ur − s8u3
dS8G . sA22d

Considering first the caser øR we take on both sides of Eq.(A22) the scalar product wither. We note that

er ·S=r 3 =r 3 E
D

asr8dBsr 8d − lAsr 8d
ur − r 8u

dV8D=er ·Ss=r=r · −DrdE
D

asr8dBsr 8d − lAsr 8d
ur − r 8u

dV8D=
]

] r
E

D

=r8 · fasr8dBsr 8dg

ur − r 8u
dV8

−
]

] r
E

S

nss8d ·
ass8dBss8d − lAss8d

ur − s8u
dS8 + 4pfasrdBrsrd − lArsrdg, sA23d

where we have used the identityDrur −r 8u−1=−4pdsr −r 8d and the Coulomb gauge= ·A =0. The two integrals on the third
RHS line of Eq.(A23) were already treated in Appendix A 1. Concerning the boundary integral in Eq.(A22) over the electric
potential we note that
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er ·F=r 3 Snss8d 3
r − s8

ur − s8u3
DG = −

]2

] r ] s8

1

ur − s8u
. sA24d

Putting everything together we obtain

f=r 3 Bsr dg ·er = m0sfasrdBrsr d − lArsrdg +
m0s

4p F ]

] r
E

D

dasr8d
dr8

Brsr 8d
1

ur − r 8u
dV8 −

]

] r
E

S

ass8dBrss8d − lArss8d
ur − s8u

dS8

+E
S

wss8d
]2

] r ] s8

1

ur − s8u
dS8G .

Representing now the left-hand side according to Eq.(A4), applying Eq.(36), and integrating both sides over the angles we
obtain

tlmsrd = m0sFasrdslmsrd − lslm
A srd −

l + 1

2l + 1
E

0

r dasr8d
dr8

slmsr8d
r8l

r l dr8 +
l

2l + 1
E

r

R dasr8d
dr8

slmsr8d
r l+1

r8l+1dr8 −
l

2l + 1

r l+1

Rl+1fasRdslmsRd

− l slm
A sRdg −

1

2l + 1
wlmsRd

r l+1

Rl G . sA25d

Substituting Eqs.(A12) and (A21) into Eq. (A25) leads to

tlmsrd = m0sFasrdslmsrd −
l + 1

2l + 1
E

0

r dasr8d
dr8

slmsr8d
r8l

r l dr8 +
l

2l + 1
E

r

R dasr8d
dr8

slmsr8d
r l+1

r8l+1dr8

+
l + 1

2l + 1

r l+1

R2l+1E
0

R

r8l dasr8d
dr8

slmsr8ddr8 +
l

2l + 1

r l+1

R2l+1E
0

R

r8l+1tlmsr8ddr8 −
l

2l + 1
E

0

r r8l+1

r l tlmsr8ddr8

−
l

2l + 1
E

r

R rl+1

r8l tlmsr8ddr8 −
r l+1

Rl+1asRdslmsRdG . sA26d

This is the second radial integral equation for our problem. Therefore, the spherically symmetrica2 dynamo model is reduced
to the two coupled integral equations(A6) and (A26).

2. Derivation from the radial differential equation system
using a Green’s function method

In this part, we give an alternative approach to establish
the integral equations(37) and (38), starting with the radial
differential equation problem(39)–(41).

First, we derive the Green’s functionGssr ,r0d, corre-
sponding to Eq.(39). This Green’s function satisfies

]2Gs

] r2 −
lsl + 1d

r2 Gs = dsr − r0d, sA27d

uGsur=0 = 0, sA28d

RU ] Gs

] r
U

r=R

+ l uGsur=R = 0. sA29d

According to the construction method of Green’s functions
([40], p. 355), we obtainGssr ,r0d in the following form:

Gssr,r0d =5−
1

2l + 1
r0

−lr l+1, r ø r0,

−
1

2l + 1
r0

l+1r−l, r ù r0.

sA30d

As for Eq. (40), we first rewrite it in the form

1

m0s

d2F

dr2 −
1

m0s

lsl + 1d
r2 F +

d

dr
Sda

dr
slmD − m0sltlm = 0,

sA31d

where F= tlm−m0saslm. This differential equation problem
for tlm can be split into two problems. One of them reads

d2F1

dr2 −
lsl + 1d

r2 F1 + m0s
d

dr
Sslm

da

dr
D − m0sltlm = 0,

F1ur=R = 0. sA32d

The other is

d2F2

dr2 −
lsl + 1d

r2 F2 = 0,
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F2ur=R = − m0sasRdslmsRd. sA33d

For the differential equation problem(A32), applying the
construction method of Green’s function[40] again, we ob-
tain its Green’s function in the form

Gtsr,r0d =5
1

R2l+1s2l + 1d
sr0

l+1 − R2l+1r0
−ldr l+1, r ø r0,

1

R2l+1s2l + 1d
sr l+1 − R2l+1r−ldr0

l+1, r ù r0,

sA34d

which satisfies

]2Gt

] r2 −
lsl + 1d

r2 Gt = 0, sA35d

Gtur=0 = 0, sA36d

Gtur=R = 0. sA37d

As for the differential equation problem(A33), the solu-
tion can be expressed as

F2 = −
m0s

Rl+1asRdslmsRdr l+1. sA38d

Then the superposition theorem of the linear problems al-
lows us to obtain the following integral equations forslm and
tlm:

slmsrd = −E
0

R

Gssr,r0dm0sasr0dtlmsr0ddr0

+ m0slE
0

R

Gssr,r0dslmsr0ddr0, sA39d

tlmsrd = m0sasrdslmsrd

−E
0

R

m0s
d

dr0
Sslmsr0d

dasr0d
dr0

DGtsr,r0ddr0

+ lm0sE
0

R

Gtsr,r0dtlmsr0ddr0 −
r l+1

Rl+1m0sasRdslmsRd.

sA40d

Integrating by parts the terms containing derivatives ofslm in
Eq. (A40), we obtain

slmsrd = −E
0

R

Gssr,r0dm0sasr0dtlmsr0ddr0

+ m0slE
0

R

Gssr,r0dslmsr0ddr0, sA41d

tlmsrd = m0sasrdslmsrd +E
0

R

m0s
dasr0d

dr0
slmsr0d

] Gtsr,r0d
] r0

dr0

+ lm0sE
0

R

Gtsr,r0dtlmsr0ddr0 −
r l+1

Rl+1m0sasRdslmsRd.

sA42d

Therefore, we have obtained the same integral equations as
expressed in Eqs.(37) and (38).

APPENDIX B: SOME NOTATIONS

In this appendix, we define the constantsci that are used
in Sec. IV. These are

c1 = −
Lbsb + 1d

Ng

,

c2 = −
Lasa + 1d

Ng

,

c3 = −
K

2Ng

asa + 1dfasa + 1d − bsb + 1d − gsg + 1dg,

c4 = −
K

2Ng

bsb + 1dfasa + 1d − bsb + 1d + gsg + 1dg,

c5 = −
Lgsg + 1d

Ng

,

c6 = −
K

2Ng

hbsb + 1dfasa + 1d − bsb + 1d + gsg + 1dg + gsg

+ 1dfasa + 1d + bsb + 1d − gsg + 1dgj,

c7 = −
K

2Ng

bsb + 1dfasa + 1d − bsb + 1d + gsg + 1dg,

c8 =
K

2Ng

asa + 1df− asa + 1d + bsb + 1d + gsg + 1dg,

c9 =
K

2Ng

gsg + 1dfasa + 1d + bsb + 1d − gsg + 1dg,

c10 =
L

Ng

asa + 1d,

c11 =
L

Ng

fasa + 1d + bsb + 1d − gsg + 1dg,

c12 = −
2L

Ng

asa + 1d,
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c13 =
L

Ng

bsb + 1d. sB1d

In Eq. (B1) we have used the expressions for the Adams-
Gaunt and Elsasser integrals,

K =E
0

2p E
0

p

YaYbYg sin ududw,

L =E
0

2p E
0

p

YaS ] Yb

] u

] Yg

] w
−

] Yb

] w

] Yg

] u
Ddudw, sB2d

and the normalization factor

Ng =5
2pgsg + 1d

2g + 1

sg + md!
sg − md!

, mÞ 0,

4pgsg + 1d
2g + 1

, m= 0.
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