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Integral equation approach to time-dependent kinematic dynamos in finite domains
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The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few
exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differen-
tial equation approach. The present paper tries to facilitate the use of integral equations in dynamo research.
Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart
law, the integral equation approach has a number of practical advantages. The first advantage is its proven
numerical robustness and stability. The second and perhaps most important advantage is its applicability to
dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant
not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the
first general formulation and application of the integral equation approach to time-dependent kinematic dyna-
mos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic
field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary.
For the spherically symmetria® dynamo model it is shown how the general formulation is reduced to a
coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field
components. The integral equation formulation for spherical dynamos with general stationary velocity fields is
also derived. Two numerical examples—thé dynamo model with radially varyingr and the Bullard-
Gellman model—illustrate the equivalence of the approach with the usual differential equation method. The
main advantage of the method is exemplified by the treatment efatynamo in rectangular domains.
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. INTRODUCTION B=0(r3 as r— . (3)

Cosmic magnetic fields, including the fields of planets, The induction equatioil) is sufficient to treakinematic
stars, and galaxies, result from the hydromagnetic dynamdynamo models which the backreaction of the self-excited
effect[1,2]. The last decades have seen tremendous progressagnetic field on the flow is neglected. Such a simplification
in the analytical and numerical treatment of magnetic fieldis justified during the initial phase of self-excitation when the
generation in cosmic bodies. Recently, the hydromagnetighagnetic field is weak. For stronger fields, one has to cope
dynamo effect has been validated experimentally in larg&vith dynamically consistent dynamo modelbich require
liquid sodium facilities in Riga and KarlsruHg-7). the simplta_meous solution _of the induction _equation for the

The usual way to treat hydromagnetic dynamos numerimagnetic field and the_Nawer—Stokes equation for the_ veloc-
cally is within the differential equation approach. Supposing!ty- This saturation regime, however, will not be considered

the fluid velocityu to be given, the governing differential N the present paper. , _
equation is the induction equation for the magnetic fig|d The spherical geometry Qf. many cosmic bOd'.eS sqch as
planets and stars has simplified dynamo simulations in one

JB 1 important respect: for the spherical case the boundary condi-

i V X (uxB)+ —UAB, (1) tions for the magnetic field can be reformulated separately
Ko for every degree and order of the spherical harmonics, which

with uo and o denoting the permeability of the free space makes any particular treatment of the magnetic fields in the

and the electrical conductivity of the fluid, respectively. exterior superfluous.

Equation(1) follows directly from pre-Maxwell's equations ~ When it comes to dynamos in other than spherical geom-

and Ohm’s law in moving conductors. Note that the mag-€tries, this pleasant situation changes. Then the correct han-

netic field has to be divergence free: dling of the nonlocal boundary conditions becomes non-
trivial. Such a problem appears, e.g., in the numerical
V-B=0. (2 simulation of the recent dynamo experiments that are of cy-

lindrical shape, but also in the simulations of galactic dyna-
mos. There are some ways to cope with this problem: one
can use simplified local boundary conditiofigertical field
condition” [8,9], one can embed the actual dynamo body
into a sphere with the region between the actual dynamo and
the surface of the sphere virtually filled with a medium of

In the case of vanishing excitations of the magnetic field
from outside the considered finite region, the boundary con
dition for the magnetic field reads

*Electronic address: M.Xu@fz-rossendorf.de lower electrical conductivityf10,11, or one can solve the
"Electronic address: F.Stefani@fz-rossendorf.de Laplace equation in the exterior and fit the solution at the
*Electronic address: G.Gerbeth@fz-rossendorf.de boundary to the solution in the interigt2], which is, how-
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ever, a tedious and time-consuming procedure. Note that thearlier statements on this mattgl6] that the use of the
application of local boundary conditions is usually paid with Green’s function of the Helmholtz equation will lead to a
a considerable loss of accuracy. For example, for the sake @fonlinear eigenvalue equation, we present a linear formula-
comparison we have applied the simplified vertical field con+ion of the eigenvalue problem_ This makes the approach
ditions for the simulation of the Riga dynamo experimentmore attractive for numerical treatment and, hence, repre-
and found, for the critical magnetic Reynolds number, a desents an essential step for its applicability.
viation of about 15% from the correct value. . Forthe paradigmatic case of a time-dependent spherically
The integral equation approach that we will establish ingymmetric, isotropia? dynamo we derive, starting from the
the present paper is intended to change this unsatisfactoanera| formulation, a coupled system of two radial integral

IS:IIU?';:OH tcogcernmg thdef hqn?hqg gf bo.undafr%/] Condltlons'equations which is solved numerically. The equivalence with
orthe steady case and for Infinite domains of NOMOGENEOYRy o5 its of a differential equation solver is made evident.

conductivity, the integral equation approach was used in . S

few previotﬁs pa\perﬁ%—lq(.:I The inclﬂgion of boundaries, .'C also de“V‘? the coupled system of radial 'F‘tegra' equa-
again for the steady case, was already delineated in the t’)oc?l?ns for spherical dynamos with general velocity fields and
of Roberts[17]. In Roberts’ own opinion([17], p. 74, how- reat numerically the well-known Bullard-Gellman model
ever, this formulation did “... not appear, in general, to beWithin the new approach.

very useful.” In[18] we have tried to put this pessimistic ~ 1heS€ examples in spherical geometry demonstrate the

judgment into question. In particular, we have derived fromequivalence of the integral equation approach with the dif-
the general theory a system of one-dimensional integrelerential equation approach. The main advantage of the
equations for a dynamo model with a spherically symmetricformer—its suitability for handling dynamo problems in ar-
isotropic helical turbulence parameterin a finite sphere, bitrary domains—uwill then be exemplified by the treatment
and we have rederived analytically the solution found byof a simple dynamo in rectangular geometry. Extending our
Krause and Steenbe¢k9] for the special case of constamt  recent work on steadw? dynamos in such domaiffg0] to
In [20] we have investigated the performance of numericathe time-dependent case, we compute the growth rates and
schemes to solve these integral equations for stegdyy-  the eigenfields in dependence arnand compare them with
namos. the corresponding results for a spherical domain. First, we
It should be pointed out that for the steady case a similafind that the free decay is faster than in the spherical case.
approach had been established earlier under the labejowever, for increasingr the growth rates of the leading
“velocity-current-formulation” by Meir and Schmid21,22.  ejgenmode of the cubic and “matchbox” dynamo both con-
This approach had also the pronounced aim to circumvenjerge to that of the spherical case. This is a physically inter-

the numerical treatment outside the region of interest. HoWggiing result indicating that the boundary effects become less
ever, the numerical focus of this work laid more on Steadyimportant with increasing.

coupled magnetohydrodynami®HD) problems with small

magnetic Reynolds number than on dynamo problems.
In the present paper, we generalize the integral equation

approach for steady dynamos in finite domains to dynamos

with time-dependent magnetic fields. Note that in the follow- Il. GENERAL FORMULATION

ing “time-dependent” will only refer to the magnetic field,

whereas the dynamo source is always supposed to be station-Assume a stationary velocity field or a corresponding

ary. Such a formulation is highly requested for a number ofmean-field dynamo source, acting in a finite donaiwith a

problems that are related to the data analysis for the existingoundaryS, surrounded by nonconducting space. For this

and to the optimization of future dynamo experiments. Forsetting, we will derive the general form of the integral equa-

example, in connection with the Riga dynamo experimention approach for time-dependent magnetic fields, generaliz-

there is the urgent need for an inverse problem solver ifing the basic idea and the methods from the steady case

order to reconstruct, from the wealth of measured magneti€18,2Q.

field data, the Lorentz force influenced sodium flow in the We start with the pre-Maxwell's equatiorithe displace-

saturation regimg23]. An efficient forward problem solver, ment current can be skipped in the quasistationary approxi-

based on the integral equation approach, could represent amation

essential ingredient of such an inverse problem solver. Fur-

ther applications are foreseeable in metallurgy and crystal V X E(r 1) =- dB(r,1) 4)

growth where a contactless determination of the flow veloc- ' at -’

ity, based on the external measurement of induced magnetic

fields, would be highly desirable. There has been some the-

oretical and experimental progress towards such a contact-

less inductive flow measuring techniq{@4—27. Presently,

the underlying inversion technique calls for its generalization V X B(r,t) = ugj (r,t), (6)

to time-dependent magnetic fields in order to mitigate the

remaining nonuniqueness which concerns the depth depekhereB(r ,t) is the magnetic fieldz(r ,t) the electric fieldy

dence of the reconstructed velocity field. the position vectort the time, andug the magnetic perme-
There are various possibilities for the concrete formula-ability of the free space. The current dengity,t) satisfies

tion of the integral equation approach. Here, in contrast tdOhm’s law

V -B(r,t)=0, (5)
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j(r,t) =olE(r,t) + F(r,t)] (7)  dependent induction equatigfi) can show transient growth

. _ ) ) ) even in the case that all individual eigenvalues of Eat)
inside the dynamo domai®, and it vanishes outsid®. have negative real parf28—3Q.

F(r,t) denotes the electromotive for¢cemf) u(r) X B(r,1), However, fort— oo, the time evolution of the magnetic
where u(r) is the velocity of the fluid motion, which we fie|q is still governed by the eigenvalue with the largest real
suppose to be stationary. In the framework of mean-fielthart. The determination of other than the leading eigenvalue
electrodynamicssee, e.g.[1]) B(r,t),j(r,t), andF(r,t), are  might also be important to understand qualitative spectral
split into mean fields and fluctuating fields. ThE(r,t) can  changes, like that from steady to oscillatory behay@d].
be fixed to the form We are convinced that, despite the recent achievements in the
_ _ understanding of transient growth for non-normal operators,
F(r, 0 =ur) X B(r.0) + «(r)B(r,t) = Br) V. X B(r.1, there is still room for a modal analysis of the induction equa-
(8) tion. This applies, in particular, to the correct handling of

whereu(r) andB(r ,t) now denote the mean velocity and the dynamos in nonspherical domains, which is the main focus

mean magnetic field, respectively. The teatr)B(r,t) de- of th.'s paper. . . .
scribes the emf due to the nonmirrorsymmetric part of the Since t_he magnetic f|e!B is divergence free, there exists
turbulence « effect), and the termB(r)V X B(r,t) describes a magnetic vector potenti(r) such that

another effect which can be interpreted as a conductivity
decrease due to the turbulengeffec.

The equations given so far, together with initial conditions
for B, define an initial value problem fdB(r,t) which can
be combined into the form of Eql). Together with the
requirements that there be no surface current$ and that
B(r,t) vanish at infinity, they allow one to determiir ,t)
once the concrete dependencefFdf ,t) on B(r,t) has been
fixed. . | E+MA=- V. (17)

Under the condition thatl, «, and 8 in Eq. (8) only de-
phen? on the position, we can search for modal solutions of Subsequently, Ohm's law gets the form
the form

E(r,t)=E(r)eM, B(r,t)=B(r)eM, F(r,t)=F(r)e, j=o(F-M\A -V o). (18

j(rit)=j(r)eM, (9) In the following, we will derive a system of integral equa-
o ,_tions that is equivalent to the differential equation formula-
where is in general a complex constant. Then Maxwell's oy (14). The starting point for the first integral equation is

B=V XA, (15
which implies, together with Eq10), that
V X (E+\A)=0. (16)

Therefore,E+N\A has to be irrotational, and we can write

equations and Ohm's law transform into the application of the Biot-Savart law on Ed-2), leading to
V X E=-\B, (10
j(r'yx(r-r’
B(r)=ﬂj > o) (,3 )dv'. (19
V-B=0, (11) Am)y  |r—r’|

- It is well known that thecurl operator in Eq(12) is a left
V X B =y, 12 X X s
Hol (12 inverse of the Biot-Savart operator when the currgns
i=o(E+F). (13) divergence free and tangent to the boundary of the domain

[32]. Both conditions are indeed fulfilled in our case. Insert-
Hereafter, the symbolB, E, j, andF denote the functions ing Eq.(18) into Eq.(19) and using Gauss’s theorem, we get

which only depend on the positian but not on the time. the first integral equation
Taking the curl of Eq(10) and employing Egqs(12) and
13), we obtain the eigenvalue problem F(r') X (r—=r’
(13 g p B(r):Mf (r') (,3 ) g\
1 47 )y |r=r|
AB=V X (uXB)+—AB=: (B, (14)
o0 N[ A X (r=r’
. . o . - o f () (, - Lav —Mf o(s)Nn(s)
with the complex eigenfrequency, implying exponential 47 Jp Ir=r’| 47 Jg

growth of B with the rate Ré\).

An important point should be mentioned here that con- K -
cerns the intricate relation of the time-dependent solutions of Ir=sP7"
Eqg. (1) and the time evolution of the eigenfunctions of Eq.

(14). The fact that the operatof on the right-hand side Wwith n(s') denoting the outward directed unit vector at the
(RHS) of Eq. (14) is, in general, non-normal—i.e££"  boundary poins’ anddS denoting an area element at this
+ LTL—implies that Eq.(14) does not in general have or- point. For some purposes it might be useful to express the
thogonal eigenvectors, and the solution of the original timevolume integrals in Eq(20) in the form

r-s 20
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Far')x (r-r') Ve X F(r') , For the steady case, Eqe0) and (24) with A=0 are
W = ﬁdV -1 n@s) sufficient to determine the magnetic fiedd But for the time-
o b S dependent case presently under consideration, we have to
F(s)) introduce the vector potenti&l, at least at the boundary, for
X v _S,|d3'. (21)  completely formulating the problem. Necessarily we have to
establish another relation fér in order to make the problem
and, usingV X A=B, solvable. From Eq(15) and Helmholtz’s theoreni[33], p.
53) we can express the vector potential in one of the two
ACX (=) [ B , o W . :
— 3 dv'= —dV' - | n(s")
D Ir=r'| plr=r’ S ,
1 V. XB(r')
A(s') AN)=—| —(————
X ——-dS. (22) dmlp  Ir=r'|

r=s|

1 B(r') X (r—=r’)

For the steady cas@.=0) Eq. (20) reduces to the form :—J — 3 dv'+ —f n(s’)
given in [18], with one volume integral oveB and one 4mlp  Ir-r| 4mls
boundary integral ovep. The latter one would vanish only B(s')
in the case that the dynamo region is extended to infinity. ds. (27)
The time dependence introduces now a new volume integral
over the vector potenti@ or another volume integral ovér The integral equationg20), (24), and (27) provide an-
and one boundary integral ovér which cannot be reduced other complete formulation of the problem fBr The main
to a simple expression iB. Before we focus on this point, advantage of this formulation is that one can avoid any treat-

r=s|

let us first derive the integral equation for ment of fields in the exterior dD. The boundary conditions
From Eq.(18) and the demand that the current has to beare being fulfilled by solving the additional integral equa-
divergence freeV -j =0, we get a Poisson equation fer tions for ¢ andA.
Ap=V - (F-\A). (23
Assuming a vacuum boundary condition which means that
the current must not leave the domdin we obtain from lll. TEST CASE OF TIME-DEPENDENT SPHERICAL a?
Green’s theorem the following boundary integral equation DYNAMOS
for ¢ A. Radial integral equation system
- = F(r ,) (r-r’) In this section, we exemplify the general integral equation
P o(r)= — 3 av - SR . :
Ir—r’| approach by applying it to a simple mean-field dynamo
) model with a spherically symmetric, isotropic helical turbu-
Mdv lence parameter. In contrast to the original model with
e Ir=r'3 constanta [1,19], whose advantage is the possibility of an
, analytical treatment, we allow here to vary with radial
_ _f o(sHn(s') - ~S —ds, (24) coordinater. Aftgr giving some d(_afinition_s, we will obtain_
| | two coupled radial integral equations which will be used in

the next subsection for numerical treatment. Note that for the

wherep=1 for pointsr insideD, p=1/2 forpointsr=sonS,  gteady case the corresponding derivation had been published
andp=0 for pointsr outsideD. Again, other expressions of i, [1g].

the volume integrals might be useful: As usual in dynamo theory, we split the divergence-free
Fr')-(r=r") V-F(r') magnetic fieldB into a poloidal and a toroidal part, denoted
f — 5 dV'= —f —aVv by Bp andB+. Since we use the Coulomb gaugeA =0, an
o Ir=r] p Ir=r'l equivalent decomposition can also be applied to the vector
F(s') potentialA=Ap+A+. We represent these fields by the defin-
f n(s’) - ﬁds’ (25  ing scalarsS, T, $%, T according to
S

S T
=V XVX|- =V X |-
AC)-(=1) [ V-AD) Be= VXV (rr)’ Br=V (H)’ (28
— s dV=E-| T adv
o Ir=rl r=r’|
A A VXVX(SAr> A VX(TAr) (29
4 = —r |, = —Tr .
+J n(s) -ﬁds. (26) : [ ! [
S We introduce spherical coordinatesé, ¢ and denote the
If we use the Coulomb gauge for the vector potential,radius vector byr. The defining scalars and the electric po-
V-A=0, we see that the volume integral in H@6) van-  tential are expanded in series of spherical harmonics
ishes. Yim(6, d)—for example,
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Sr,6,¢) = .2 SN Yim(6, ), (30)

and corresponding expressions fdtr,8,¢), S\r,6,q),
TA(r, 0, ¢), and ¢(r, 8, ¢), in which s,(r) are replaced by
tim(r), S(1), thy(r), and (1), respectively.
For the spherical harmonic§,,(8, ¢) the definition
20+1(1-m)!
47 (I +m)!

Yim(6, ) = Pim(cos 9)€™  (31)

is employed, withP,, denoting associated Legendre polyno-

mials. The summations in E€30) are over all degredsand
ordersm satisfyingl =0 and|m| <I; terms withl=0, how-
ever, are without interest in the following. SingeT, S, TA

ando are real, we have_, qm and analogous relations for

tims qﬁn t|m, andg,,,. The definition(31) implies the following
orthogonality relation for theY|,(0, ¢):

2 T
f d¢f Sin6.do Y, (6,4)Yin(6,é) = &1 S -

0 0

(32)
A useful relation is
QYm==10+21)Ym, (33
where the operataf) is defined by
——(sin 0“) Lt (34
sin6d6 06) " sirf6od?

From Eqs(28)—«30) we obtain, with the help of Eq33), the
components oB,

+1
B,(r,0,¢) = E )sm(r>v|m<a¢>

tim(r) 9 Yim(6, ) gdsm(r)av.m(e,qs))
By(r.0,4)= E(rsmﬁ X +r dr J0 '

tm(r) 9 Yim(6, )

B¢(f,0,¢)=%(— . 0

1 ds{m(r) d YIm( 0, ¢)
rsing dr X0}
and equivalent expressions for the componentsAofin

which s,,(r) andt,,(r) are replaced byq’?n (r) andt m(r), re-
spectively.

) . (39

Finally, we recall the expression for the inverse distance

between two points andr’,
I

=4 2 E I+lY.mw' ¢ Yim(6,4),
|r i=om=—i 2 +1r
(36)
wherer-. denotes the larger of the valueandr’, andr_ the

smaller one.
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rived. This is done in Appendix A, both as a dimensional
reduction of the basic integral equation system and from the
radial differential equation system by using the Green’s func-
tion method. Here we give only the final form of the integral
equation system fag,(r) andt;,(r):

' r,|+l ’ ! !
SIm( )_ 2| +1 f N a(r )tlm(r )dr

R r|+1 ; r’|+1
+J Fa(r’)qm(r’)dr’—)\f Tslm(r,)dr'
' 0

R r|+1
—)\f Fs,m(r’)dr’
r

(37

and

[+1 r d ’ 7l
tim(r) = Moal a(r)Syy(r) = f i;(rr; )Slm(r,)rr_|dr,

21+1/,
| R
‘il
20+1J,
ka" ri+l fR r,Idoz(r’)
21+ 1R ) dr’

N r-|+1 IR "
+ ——= r it (r)dr’
21+ 1R ) m

)\ rrl|+l )\
-—— | —t,(r)dr’ - ——
2|+1f r! im(r") 2l +

da(r’) ,I‘|+l ,
drl Slm(r )r/|+1dr

Sm(r")dr’

R 1+1
r,| t|m(l")dl"

rI+1
—R|—+1a(R)S|m(R) : (39)

Notwithstanding the fact that the differential and integral
equation approaches are equivalent in a general sense, it
might be instructive to show this equivalence for our special
problem. Differentiating Eqs(37) and (38) two times with
respect to the radial component the following relations can
be obtained:

1 |d%s, 101+1)

)\Slm:E_[d_?z_ r2 Slm:|+01(r)tlma (39

1 [d2, 10+1 d ds,

ST T

MU
(+ ) a(0)5im (40)
. (R=RIE | s R=0. (41)
dr |-

As expected, these are the differential equations for the con-

Equipped with these preliminaries, the two coupled inte-sidered problem of radially varying for the time-dependent

gral equations for the functiors,(r) andt,,(r) can be de-

case[31,34.
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B. Numerics _ N
1. Discretization )\% Sm(Xj) Gs(Xi, X)) AXC;
In the previous section and in Appendix A, we have de- N-1
the time-dependent dynamo problem. In s subsection, we ~ 3m%) * € @0tm( G x)GAx. (49

develop a numerical method to solve this integral equation

system. N1
Let us introduce the following definitions: AN Gi(%;, X)) tim(X)) AX G = tim(X) = Car(X;)Sm(X;)
~ j=1
=r/R = R2 = R2 42
X r/ ’ CC((X) Moga(r), )\| MOO')\Iv ( ) + C>4+la(1 O)S|m(10)
whereC is the magnitude of the functioR’uqoa. In addi- (
) . X dalx:
tion, we introduce the notations CE sm(x)Gt(x,,x)Axcj
~l 1+1
- Xo X5, X=X,
21+1 da
Ge(X, %) = 1 (43 + CE XX, T(Jls"n(xj)Axcj,
_ Xglx—l' X = Xo, j=1
| . where cy=0.5 andc¢;=1.0 fori=1,2,... N-1. Equations
o+ 1(>< . X)X L X< X, (49) and(50) can be written in the matrix form
Gi(X,%g) = 44 ~
(X0 Lo x L x=x, 49 MVX =WX, (51)
20+1 ' with
1+1 | | 1 et X = (Sm(X), Sim(X2), - - ,Sim(Xn),
- = X+ 4 — Lyl ’ X< ’
Soxy = 2" AP X tin(X0), tin(X2), - fin(¥0-2) T
R 1+1 -1y .
2 +1xO 2I_+1X Xor X = Xo. Vij=Gyx,x)Axg  (1,j=1,2,... N),
(45) Vinj=0 (i=1,2,...N-1,j=1,2,...N),

Then, Eqs(37) and(38) obtain the form ) )
Vijon=0 (i=12,...N,j=1,2,...N-1),

1
Sm(x)=-C f . G(X,Xo) a(Xo)tim(Xo) dXo Vi on = G5, AX

o (i=1,2,...N-1j=1,2,...N-1),
+A\ f Gs(X,X0)Sim(%0) Ao, (46)
° Wi=800) (=12 ...N),
tim(%) = Ca(X)Sm(X) ~ CxX*a(1.0)5(1.0) Wi o = Ge(%,, X)) AXc (X))
+Cf da;O)sm(xo)Gt(x xo)d% (i=1,2,...N,j=1,2,...N-1),
0
~ 1 VVi+N,j+N:5(i1j) (i,j:l,2,...N—1),
+ )\If Gi(X,X0)tim(X0) dXo da(x)—
° Wiay,j = = C— Gl %) AxG; = Calx) (. )
X da(Xo)
-C f XX Sim(X0)dXo. (47) ol
0 dx +CxX ™ a(1.008(j,N) + Cx{'x}MquH(i -i)

dx
ChoosingN equidistant grid pointsg=iAx with Ax=1/N

and approximating the integrals by the extended trapezoidal (i=1,2,...N-1,j=1,2,... N), (52

rule according to where the functions(i,j) andH(i—j) are defined as

l - .
f f(x)dx~2 [f(xI _p) +f(x)]AX, (48) 5(”_):{0, i #],

0 i-1 2 1, i=j,

we obtain and
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TABLE |. Comparison of the calculated growth rates and the 1 PP,
analytic ones for the free decay casé)=0. The degree of the P
spherical harmonics i=1. n=1,...,4 correspond to modes with 10| ':"m n=3 -
increasing radial wave number The last row shows the analytic N=4 g
results. The other rows express the numerical results obtained by 3
the integral equation approach for different grid numbsrs 5 102 |

E

N n=1 n=2 n=3 n=4 ® ,.3
e 10

8 -9.79494 -37.71179 -79.61435 -129.36969

16 -9.85079 -39.02608 -86.41265 -150.20904 104k

32 -9.86485 -39.36475 —-88.21583 -155.94894

64 -9.86844 -39.44979 -88.67356 -157.42004 1078 . .

128 -9.86933 -39.47085 -88.78596 -—157.78870 10 100

Analytic -9.86960 -39.47842 -88.82644 —157.91367 Number of grid points

FIG. 1. Relative error of the numerically determined eigenval-
ues for the free decay cas€=0, I=1, n=1,...,4. The conver-
1, i=j, ikii—2,
H(i - )= {0 _ J gence behaves likd
, 1<,

tions of that kind[20], the relative error decreases like2.

Another quasianalytic result exists for the steady ¢ake
for 1I=1 andC=4.493 4095 ol=2 andC=5.763 459 3 we
know that the first eigenvalues have to be zero. Table Ill
shows the results of the integral equation solver, agair for

VWX =)~\|X. (53) =1 andl=2, but only forn=1. The convergence of the re-
sults, which is again-N2, is depicted in Fig. 3.

This eigenvalue problem can be solved by standard numeri- Now, we turn to a more complicated case. It corresponds
cal routines. First, the matri¥ ~*W is reduced to the Hes- to the profile  a(X)=C(-21.46+426.442-806.7%3
senberg form; then, ther algorithm can be employed to +392.2&*). The choice of this somewhat strange function is
obtain the eigenvalug,. motivated by the fact that it is an example of a proper oscil-
latory o dynamo[31]. In Fig. 4 we show the results of the
integral equation solver for the cakel andn=1,...,7. We

In this subsection, we illustrate the numerical perfor-see that the spectral dependence((Fig. 4) is very com-
mance of the integral equation approach formulated in thiglex, with merging and splitting points of neighboring
paper by a few examples for the functioné). branches at which nonoscillatory solutions turn into oscilla-

Let us start with the case(x)=0, which corresponds to a tory solut_ions and vice versa. The computatipn was done
pure field decay within a conducting sphere. For this case/ith a grid number ofN=128, and the result is basically
the eigenvalue§| are known from quasianalytic calculations identical with that of a sophisticated differential equation

[1]. In Table I(for I=1) and Table li(for 1=2) we have listed solver[31]. Hence, Fig. 4 might serve as a striking example

the numerical results of the integral equation solver for thethat the integral equation approach works satisfactorily also

eigenmodes with increasing radial wave numbans In case that complex eigenvalues appear.
=1,...,4, together with the analytical results. From these

Note that Eq.(51) is a linear generalized eigenvalue prob-
lem. By multiplying both sides of Eq51) by the inverse of
the matrixV, we can convert it to the following standard
eigenvalue problem:

2. Numerical results

tables it becomes obvious that even for a few grid numbers 1 1
robust results can be obtained. In Figs. 1 and 2 we have N=2 s
plotted the relative errors of the results in dependence onthe 4511 2:2 -
used number of grid poinf¥. As is typical for integral equa-
g .2
TABLE II. Same as Table I, but for=2. s 107}
>
N n=1 n=2 n=3 n=4 3 10°}
[
8 -19.87668 -55.87647 -103.28617 -155.45810 4
16 -20.11100 -58.68925 -114.71107 -186.07856 107¢
32 -20.17073 -59.42935 -117.83333 -194.82947
64  -2018561 -59.61664 -118.63189 -197.00552 10 10 100
128 -20.18911 -59.66311 -118.83366 —197.66728 Number of grid points

Analytic  -20.19073 -59.67951 -118.89986 -197.85780

FIG. 2. Same as Fig. 1, but for2.
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TABLE Ill. Convergence of the first eigenval@e=1) to zero in
the casesC=4.493 409 5/=1 andC=5.763 459 3|,=2. The nor-
malization of the errors is done with the growth rate€at0, which

are\,(C=0)=-9.8696 and\,(C=0)=-20.1907.
| N=8 N=16 N=32 N=64 N=128
1 0.19836  0.04971  0.01249  0.00355  0.00052
2 0.58527  0.14903 0.03740 0.01010  0.00072

IV. GENERAL VELOCITY FIELDS IN SPHERICAL
GEOMETRY

A. Radial integral equation system

In this section the Green'’s function method from Appen-
dix A 2 is applied to convert the induction equation for gen-

eral velocity fields in a unit sphere to the integral equation

system. In dimensionless form, E@L) can be rewritten as
follows:

JB )
— =R,V X (uXB)+V“B,

Py (54

whereR,, is the magnetic Reynolds numbarandB may be
expanded into the following serig¢85]:

u=> (t,+s,), (55)
B=2 (Tg+Sp, (56)
B
where
ta = V X [erta(rlt)Ya( 0! ()D):Iv (57)
1 .
I=1,n=1 —_—
[=2,n=1 -
107 E
S
3 10%
[+ 7}
N
E 10° F
[
=
10}
107° :

10 100
Number of grid points

FIG. 3. Convergence of the first eigenvalue=1) to zero in the
cases:C=4.493 409 5,=1 andC=5.763 459 3|,=2. The normal-
ization of the error is done with respect to the growth rate€ at
=0 which arex;=-9.8696 anc\;=-20.1907.
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Re()\)

A0 LT
0 0.5 1 15 2
(@) c
20 -
n=7:
15 +
_ o~
5r n=2 / /l'/
£ 0 =7
-10 F e L N
5 |
n=6"‘.‘
-20 F ‘\‘.
0 05 1 15 2

(b) c

FIG. 4. Special casea(x)=C(-21.46+426.4%%>-806.73%°
+392.2&%. Growth rates and frequencies for the eigenfunctions
with (I=1,n=1,...,7. The number of grid points wakl=128.
Note the merging and splitting points of the spectrum, indicating
transitions from nonoscillatory to oscillatory modes and vice versa.

S,= V XV X[egs,r,)Y,(0,0)], (58)

etc. From here onY, denote thg2a+1) surface harmonics
Pamu(e)sin(macp), Pama(a)cos(ma(p) (m,=0,... @), where
Pam, is a Legendre function with Neumann normalization
and P,y the Legendre polynomial. Similarlg, is an abbre-
viation for s]+, etc. The summations in Eg&5) and(56) are
over cosine and sine contributionsg=1,2,3,...m,
=0, ...,@; and similarly forg, mg. Substituting Eqs(55) and
(56) into Eq. (54), Bullard and Gellman35] derived the
spectral form of Eq(54) as

7S, S, Ay+l)

_Rn
ar2 ot r2 S,= ?azﬁ[(tasﬁsy) +(8.TgS))

+ (SaS,BSy)]! (59)
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PT, 0T +1
_22 -—7r- y(‘y—z)T'y = &2112 [(taT,BTy) + (taSﬁT'y)
ar at r I ap
+ (SaTETy) + (SaSﬁTy)]y (60)
where

(t,55S,) = C1taSs,

(S4TgS,)) = €S, T g,

as
C4—aS ,

a5
S.S:S.) = Css,—L +
(aﬂy) Saar ar

(taTﬁTY) =cCst, T,

PHYSICAL REVIEW E 70, 056305(2004)

JS Jt 2t
t.SeT =ct—§+c(—“——")8,
(aﬁ'y) 6010”_ 7 ar r B

aT
(SaT,BTy) = CBSQE,E +

ar r
(s,54T,)=c —"3&28 C1y as“—sé Sa 95
P A T T AT
+cC (élziy g&)s (61)
B\ grz rogr )7

The constants; in Eq. (61) are defined in the Appendix B.

By the same Green'’s functions method as in Appendix A,
and using the definitions fdB(r,rp), G,(r,ro) there, the dif-
ferential equations syste(®9) and(60) can be converted to
the following integral equations system:

s d '
S,(r) = E R w{clt (ro)Sp(ro) + €28,(ro) Tp(ro) + €3S,(ro) SB(rO) C4 ‘Z( O)Sﬁ(ro)}droﬂx f G(r,19)S(ro)dro,
0
(62
TUr) = 2 Rm Gt(r rO)[ Cstalro) T4(ro) + Ceta(ro)dsﬁ(rO) + C7< (1) - 2ta(r0)>s,3(ro)
r2 drg drg ro
dT ds, 2 ds, d’s ds,(ro) d
+CgS,(Io) (fr(:O) + Cs( Z:(:O) - E)-%(%))Tﬁ(fo) +Cg Sd:(:()) Tp(ro) + C1084(ro) d[i(grO) +Cpy Sdg)o) Sdﬁr(:(J)
s,(ro) dSs(ro) d?s,(ro) 2 ds,(ro) !
+Cy roo Sdﬂroo 013( dréo - r—o droo )Sﬁ(ro)]droﬂxfo Gi(r,ro) T,(ro)dr. (63

Strictly speaking, this is an integro-differential equation system which could be used for numerical analysis. If one would insist
on having a pure integral equation system, one could employ integration by parts in order to obtain

1

1 1
Gq(r,

S(N=2 Rm|:f Gs(rer)Fl(rO)Sﬁ(rO)drO+f Gs(r,ro)Fz(ro)Tﬁ(ro)dro*‘f A SHL) a(rr o Fa(ro)Ss(ro)drg
ap 0 0 0 0

1
_ 2yt 1ry+15a(1.0)sﬁ(1.0)] + )\JO Gq(r,rg)S,(ro)dry, (64)

' ! LaG(r,ro)
T, =2 R f Gt(r,ro)th(ro)Tg(ro)dro"'f Gt(rer)FS(rO)Sﬁ(rO)dr0+f —
aff 0 0

0

Fs(ro)S(ro)drg

LaGy(r,ro) Cio0 !
- f o Filro)T(ro)dro = cugr s, (1.0S(1.0 + - 5°Su(NS5(1) | +A f Gi(r,roTyrodro, (69
0 0 0

with
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10

,,,,

Re(A), Im(A)
3

20 } Re(A)

0 10 20 30 40 50 60 70 80
Rm

FIG. 5. Real and imaginary parts of the first eigenvalue for the
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B. Numerical example: The Bullard-Gellman model

In the following, we will test the suitability of the integral
equation approach to the simulation of large-scale velocity
fields for a particular dynamo model. In 1954, Bullard and
Gellman[35] studied the flow structure

u=s°+5t, (66)

where
SN =r¥1-n7?, (67)
t(r) =r?(1-r), (68)

Bullard-Gellman dynamo model in dependence on the magnetic

Reynolds number. The truncation degreé #9, and the number of

radial grid points iN=75.

[ d (s, 1ds,
Fl = Cl_z —C3— F +C -
0

4" > 1
ro dro r(Z)drO
Sq
FZ:CZ_Z’
0
Su
F3:_C3_2,
0
t d (s l(ds, 2 1lds
F4205_a‘08_<_a +Cg 5|~ =Sy +Cos
rg dro rg rg dro lo “ rgdro

F —_Ci<t_a>+c 1<%_Et>+c ( +1)i
°7 TPdrg\r2) " r2\dry 1o © 101y re

i d_2<i>_c i(i@)_c i(i)
Yarz\r2)  Mdrg\r2dry) dro\rd

(5 208

+Ci3
%2\ dr2  rodrg
t, d (s, 1ds, Su
Fe=-Co5+2Ci0- | 3|~ Cuz . ~Cizz:
ro dro\ rg rodro r
SO(
F7 =- 08_2 .
o

claiming that this flow acts indeed as a dynamo. Later, using
higher spatial resolution, Gibson, Roberts, and Sd&if)

and Dudley and Jam¢g87] falsified this result, showing that
there is no dynamo up to a magnetic Reynolds number of 80.

Here we treat the Bullard-Gellman model within the
framework of the integral equation approach.

In Fig. 5 we plot the real and imaginary parts of the first
eigenvalue of the D1 solutiofin the terminology of Dudley
and Jamesfor the Bullard-Gellman dynamo model in de-
pendence on the magnetic Reynolds number. The truncation
degree isL=9, and the number of radial grid points
=75. This is essentially the same curve as publishe@1h
where a truncation degrée=12 and a number of grid points
of N=100 had been used, however.

In Table IV we have compiled some results concerning
the convergence of our method and the method of Dudley
and James. FORmM=50 (where no data are available from
Dudley and Jame@snve see a reasonable convergence of the
real part but a slow convergence of the imaginary part. The
latter might be due to the fact that we are not far from the
transition point to oscillatory behavior where the imaginary
part is sensible to changes in the grid number. Ror=80
we have to concede that the convergence in our case is
slower than in the differential equation method of Dudley
and James.

A similar conclusion can be drawn from the treatment of
other models(Lilley model, modified Lilley model Al-
though our method yields essentially the same results as the
differential equation approach, it seems worth to look for

The discretization of this integral equation system is donegefined numerical methods to solve the integral eigenvalue

along the lines described in Sec. IlI B 1.

equation.

TABLE IV. Convergence of the integral equation approd&®) and the Dudley and James meth@d).
We show the dependencebn the radial grid numbeX for Rm=50 andRm=80 using a truncation degree
L=9. The interpolation in the IEA case is done with a fit of the date to a funeticoN 2. Dudley and James
had used Richardson extrapolation based on the valuds=£@5,100,125.

N=50 N=75 N=100 N=125 Extrapolation
IEA Rm=50 -23.50+4.97 -22.97+4.08 -22.76+3.66 —-22.63+3.34
IEA Rm=80 -29.35+9.46 -27.70+7.72 -26.95+6.98 -26.51+6.5v -26.10+6.26
DJ Rm=80 -26.32+6.00 -26.33+6.04 -26.33+6.06 —-26.34+6.06
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INTEGRAL EQUATION APPROACH TO TIME-...

\\@%?«\\?V \ o
Ss
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©
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N/
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s\

"
Vi

C gy

7.

o

2 dynamo in a “matchbox”

1.943, and 4.59@rom left to righ?). The latter valueC’

FIG. 6. Magnetic eigenfields belonging to the three lowest eigenvétwdsred from top to bottopof the «
4.593 is the critical value for the first eigenmode. The gray scale of the field lines indicates the field strength.

oére 0,

!

with a sidelengths ratio of 1:0.8:0.6. The corresponding value€

the electric potential at the boundary. Then, Ef)) may be

rewritten in the form

V. GENERAL NUMERICAL SCHEME AND ITS
APPLICATION TO RECTANGULAR DYNAMOS

(69)

i andA; denote the degrees of freedom of the mag-

i1
eld and the vector potential in the volume of the dy-

LBy + APA; + N

Bi:

In order to demonstrate the applicability of the integral

equation approach, we consider here the case of an arbitr

hereB
m

geometry. First, we delineate the general numerical sche

Fretic fi

then, we will apply it to dynamos in rectangular geometry.
Needless to say, this geometry is only of academic interes

whileg, andA,, denote the degrees of freedom of the

namo
Electr'

ic potential at the boundary. Here and in the following
e use Einstein’s summation convention, and we reserve the

w

but it illustrates nicely the main advantage of the integra

equation approach.

indicesi, j,k for magnetic field and vector potential degrees
of freedom in the volume of the fluid, whereas the indices

n are reserved for the electric potential degrees of free-

dom at the boundary of the fluid.

Here we delineate the general framework for the numeri-

cal solution of the coupled equatio(®0), (24)

m

A. General numerical scheme

For any given dynamo source, any shape of the dynamo
domain, and any concrete form of the discretization, the ma-

and(27). Let

us assume certain spatial discretizations of the magnetic fieldicesL, N, andP in Eg. (69) can easily be derived from Eq.
and the vector potential in the volume of the dynamo and 0{20). It is worthwhile noting that onlyL depends on the

056305-11
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FIG. 7. Electric potential and magnetic vector potential at the box boundary belonging to the three lowest eigéondstes from top
to botton) of the & dynamo in a box with sidelengths ratio 1:0.8:0.6. The corresponding valu€s:6f 1.943, and 4.598rom left to
right).

dynamo sourc€u or «), whereasN and P depend only on A, = QiBx, (72
the geometry of the dynamo domain and the discretization
details. with Q depending solely on the geometry.

Similarly, the discretization of the boundary integral equa- Substituting Eq(72) into Eq.(71) yields
tion (24) (for the case that is on the surface) leads to

¢m= (G mHiBk + MG ™) D) QB (73)
0.5 ¢y + Ejmem = HiBy + ADjj Ay (70
However, for the inversion of the matri¢ some care is
or needed. BasicallyG is a singular matrix, reflecting the fact
that the electric potential is determined only up to a constant.
Gim¢m=HiBx+ ADjjA;, (71)  Accidently, it may happen that this singularity is weakened

by inaccuracies due to the discretization. Nevertheless, one
whereG,,,=0.5 §,,+E»- Again one should note that only  should be careful with the inversion. A convenient method to
depends on the dynamo source, wher€asnd D depend deal with the inversion is the application of tleflation
only on the geometry of the dynamo domain and the discretimethod[38,39. In the following, we will simply assume that
zation details. The discretization of E®7) gives the inverse ofG has been found in an appropriate manner.
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10 F More concretely, we will consider a cube and a “match-
box” with a side length’s ratio of 1.0:0.8:0.6. In order to
5t compare the results with the spherical pendant we choose a
length scale such that we get the same volume as the unit
oF sphere. That means, for the cube we use a side length of
< §47/3=1.612, and for the “matchbox” we use the longest
ey side length as 2.0588. The domain is divided intd daller
rectangular boxes, with each face divided intd féktangles.
10 j,,:-;".'ﬁ Cube e For the steady case this problem has been treatgDjnand
e Matchbox: EW { - most of the details of the integral discretization can be found
15 = mggﬂgg)’: Ewg T there. The additional terms related to the time-dependence
' : : ' : : : are discretized in close analogy.
0 1 2 3 4 5 6 7 8

Using the code for the steady problem,[R0] we found
the following critical values o€’ := uyoa for the cubic case,
FIG. 8. Dependence of the eigenvalueon C’ for the sphere, ~the threefold degenerated critical valueds=4.599; for the
the cube, and the matchbox. For the sphere and the cube, the eigdRatchbox the three first critical values a@=4.593, C;
value is threefold degenerated. For the matchbox, the degeneratigié. 758, andC;=4.793(note that hereC’ refers to a box of
is lifted. The length scale for the cube and the matchbox is chosethe same volume as the unit sphere, wherea2@ they
in such a way that their volume is equal to the volume of the unitrefer to the cube of side length 2 and to a matchbox with the
sphere. Note the convergence of the leading eigenvalue for all thrdengest side equal t0)2

c

geometries with increasing’. For the matchbox, we have visualized in Fig. 6 the mag-
netic field for the three first eigenvalues at the val@ésO0,
After inserting Eqs(72) and(73), Eq.(69) is transformed C'=1.943, and at the critical valu€’=4.593. The corre-
to sponding electric potentials and vector potentials at the sur-
L face of the matchbox are shown in Fig. 7.
Bi = LixB + AP; QikBy + Niy(G™) miHi By Looking at the free decay ca§¥ =0, one can see a quite
+ )\NiI(G_l)ImijijBk- (74) similar poloidal field structure as is well known in the spheri-

cal case. For increasin@’ the magnetic field structure be-
Evidently, the electric potential at the boundary and the mageomes more and more tangled and helical. The three eigen-
netic vector potential in the volume served only as auxiliaryvectors correspond to three different positions of the dipolar
quantities in order to ensure the right boundary conditionsaxis. As expected, the magnetic field structure at the critical
From the numerical viewpoint it is important to take notice value C'=4.593 is the same as published[20].
of the following: for the accurate solution of the boundary In Fig. 8 we plot now the dependence of the growth hate
integral equatiori73) for a dynamo in a given domain it may on C’. First we see that the free decay is faster than in the
be advisable to use a fine discretization of the boundary witlspherical case. However, for increasimdhe growth rate of
a large number of grid points. Hence, the corresponding inthe leading eigenmode of both the cubic and the matchbox
version of the matrixG might be numerically expensive. dynamo converges to that of its spherical pendant. This is a
However, for a given geometry this inversion is needed onlyphysically interesting result indicating that the boundary ef-
once. Finally, after carrying out the matrix multiplications fects become less important with increasiag
N-G™*-H andN-G™1.D-Q in Eq. (74) one ends up with a
matrix of the order(NB,NB) where NB denotes the total
number of all magnetic field degrees of freedom.
Now, Eq.(74) can be rewritten in the following form: We have established the integral equation approach to
-1 time-dependent kinematic dynamos, with stationary dynamo
[Sik = Lik = Nim(G ™) miHuc]Bx sources, in arbitrary domains. This approach is based on the
:)\(Piijk"'NiI(G_l)Imijij)Bk- (75) Biot-Savart law. The main advantage of the method is its
. suitability to handle dynamos in arbitrary domains. The ne-

This is a generalized linear matrix eigenvalue problem incegsity 10 solve the Laplace equation in the exterior of the
which only the magnetic field components remain. The NUgynamo domain is circumvented by thimplicit) solution of

merical solution of the arising linear generalized eigenvalug,ongary integral equations for the electric potential and the
equation(75) yields the eigenvalues, comprising as the real magnetic vector potential.

part the growth rate and as the imaginary part the frequency | spould be noted that we have worked out only one

of the dynamo. possible form of the integral equation approach which results
in a linear eigenvalue problem. Another form could start

VI. REMARKS AND CONCLUSIONS

B. Application to rectangular dynamos from rewriting Eq.(18) into the form of a Helmholtz equa-
In the following we will apply the general numerical tion for the vector potential
> .
scheme toa“ dynamos in rectangular geometry. Although AA = 11o0\A = poo(F = V ). (76)

this particular geometry is only of limited practical interest,
it serves perfectly to illustrate the capabilities of our method.Then, the pendant to E¢20) would read
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woo [ Fr') X (r=r") potential at the boundayywe see immediately that we end
B(r)= Ef W up with a nonlinear eigenvalue equation for the eigenvalue
D It would be interesting to compare the numerical perfor-
xexpkr =r’)(L=Kr=r'))dV’ mance of such a formulation with the present one.
, We plan to use our formulation for a number of dynamo
- MJ s)n(s) r-s problems, in particular problems which are connected with
Ir-s'|® the design and optimization of new dynamo experiments and
wexplKlr —r'[)(1~Kir —r'))dS, 77 Z)V(Iatrri]rrtlgit\flocny reconstruction problem for the existing ex
with
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APPENDIX A: DERIVATION OF THE RADIAL INTEGRAL EQUATIONS FOR THE a?-DYNAMO
1. Dimensional reduction of the integral equation system

a. Radial integral equation for g,(r)
Taking the scalar product of both sides of Eg0) with the unity vectore, we obtain

_ Moo [a(r)B(r") =NA(r")] X (r=r") . ,u,o(rf ) , r-s
B(r)-g J TETE e dVv A . o(s')n(s") X —|r WP e dS
V. X [a(r)B(r’) = NA(r’ !
4 Jp Ir=r’| r

In the derivation of the last step in EGA1) we have expressesl under the integrals bgr —r’)/r+(r’/r)e,,, and we have used
the fact that the triple product vanishes wh#is') ande,, coincide forr’=s'.
By virtue of Eq.(15), Eq. (A1) becomes

_ M0 Ve X [e(r)B(r')] r'

N\ B(r’ r'
: e —dV - Mo0A (r’)
47 Jp Ir=r’| r

—dV’ A2
47 Jplr—r | (A2)

B(r)-g

Noting that in Eq.(A2),
Vo X[ar")B(r")]==B(r') X Vo alr') + a(r’)V,, X B(r'), (A3)

we see that the scalar product of the first term on the right-hand sideewithnishes since the gradient @fr’) points in the
r’ direction, too. From Eqg.34) and (35) we obtain

[Vrrxs(r’ﬂ-err:l,E,'('r'—)t.,m ()Y (0,8'). (Ad)
Taking Egs.(Al), (A3), and(A4) together we find |
> e R R B U e Y
LI (",2 S (Wi (0,80 v (AS5)

dar Jp o T Ir=r’|

After expressing the inverse distance according to (86), integrating on the right-hand side of E@\5) over the primed
angles, multiplying then both sides of E&\5) with Y,,(, ¢), and integrating over the nonprimed angles we obtain the first
integral equation of our problem in the form

r r/|+1 R r|+1 r I,/|+1 R r|+1
f r' a(r’)t|m(r’)dr’+f Fa(r’)t,m(r’)dr’—)\f Tslm(r’)dr’—)\j Fs‘m(r’)dr’ . (A6)
r

r 0

Slm()_ |+1
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b. Electric potential at the boundary

For the determination of the electric potential at the boundary it is convenient to start frof@4épr pointsr outsideD.
As for the last boundary integral in E¢R4) we have

1 r—s 1 g 1
= | ¢(s)n(s) - dS = | ¢(s)-5——dS
477L(P(S)n(s) Ir-s'|® 477L<p(s as' |r-¢|

> em(RYm(6', ¢ 2

S Im 'm’

A s"'
274108 e

(0',9")Y)m (6,)dS (A7)

and thus

ds 2 o5 1om(RYim(6, ). (A8)

1
lim— | o(s’)n(s’) -
rﬂs4’7T s |

For the evaluation of the volume integrals in Eg84) we can make the second one vanish by means of the Coulomb gauge
V-A. For the first one, we use the alternative formulation %). Taking B, from Eq. (35), we find

Vo [a(m)B] da(r) g 1P+ L
fD |r_r/| dv’ —fD dr’ % rr2 S )Y|rmr(9,¢)|r_r,|dv (A9)
and thus
Vi [a(r)B(r)] 11+ 1) i da(r)
Irl—>s47T ) r—r dv' = 2 oI+ Yim(6 ¢)f R dr —Sm(r)dr’. (A10)

Analogously, we obtain, for the remaining boundary integrals in(24),

1)1

1 a(s')B(s') —NA(S)
lim— | n(s') -

r—samJsg |I’—S|

I(l +
ds = E( ~a(RIS(R) -\ (R Vin(6,6). (A11)

Evaluating now Eq(24) for r — s with the help of Eqs(A8), (A10), and(A1l) we find

r'' d [+1
om(R) == (I 1)f R+ Z(r,) (r’)dr’++?[a(R)am(R)—>\S?n(R)]- (A12)

This expression fop(R) will later be needed in the integral equation Qy(r).
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c. Vector potential at the boundary V., XB(r’) 1
From Eq.(27) and the fact that the curl of the magnetic fD Ir=r| &dV'=- fD+D, Vr'|r —r|
field vanishes outside db, we obtain
r/
V. X B(r’) V. X B(r’) X B(r')-e,—dV'. (Al7)
[r=r’| = Ir=r’| Vi, (A13) r
P p+D In the derivation of this equation, the relatiep=(r—r"')/r
whereD’ denotes the outside region Df. Note that +(r’/r)e,, has been used again. Applying E@\14) again
B(r) 1 1 we have
; X = ’ X Nt —— r X ’ ’
Vi Ir=r’| Vi Ir=r’| B Ir=r’| Vi X B, V. X B(r') ) Vo xB(r') gy
—— V=] ——— g, —dV
(A14) p |r—r'| p |r—r'] r
The application of this equation on the right-hand side of Eq. B(r’) r .,
(A13) leads to - ’Vr/ X r—r . r,?dv
D+D
V. X B(r’) B(r’
f r—,dV' :f V. X ( 3 dVv’ (AL8)
o [r=r] D+D’ r=r’| The second term on the RHS of E#18) can be shown to
1 vanish, so we conclude that
- V. — X B(r")dV'. ,
JD+D’ Tl -] r,XB(r) r'.,
Ar) - er—— -e—dV'.  (Al19)
(A15) Cr-r] Ty
Applying Gauss’ theorem, we have Hence we obtain
V. X B(r') J B(r') r i+l R I+1
—dV' = n(s’) X ——-dS r f —tm(rHdr’ +f —tm(r)dr’ .
fD |r_r,| N ( ) |r_rr| qfn( ) 2|+1 r| Im( ) . r_/l Im( )
r—r’ (A20)
—f 3 X B(r’)dv'.
pep’ [ =1 Particularly, wherr =R in the above equation, we have
(Al6) 1 R /141
. . sh(R) = ——t,,(r")dr’. (A21)
Equation(3) allows us to conclude that the surficial integra- m 21+1 R M

tion on the RHS of this equation vanishes. Therefore, after
taking the scalar product of both sides of E416) with the  As we will see, there is no need to calculate the correspond-
unit vectore,, we obtain ing expression fot} ().

d. Radial integral equation for ,(r)

We take now thecurl of both sides of Eq(20), thus obtaining

a(r)B(r') = NA(r")
r=r]

erB(r):MlV,XV,XJ dv'—vrxf o(s)N(s') X — 3ds} (A22)
4 D S | |

Considering first the case< R we take on both sides of EA22) the scalar product witle,. We note that

er.<vr><vr><f a(r,)B(r’)_)\A(r/)dV’>:er'((VrV A)f a(r/)B(r/)
D

r=r’| r=r’|

ar [r=r’|

)\A(r’)dv> if o La(r)BIY]

_ 7 J n(s) - “(S')Bﬁsl_);"‘A(sl)ds + 4mfa(r)B,(r) = NAL(N)], (A23)

where we have used the identity|r —r’|"*=—478(r —r’) and the Coulomb gaug®€-A=0. The two integrals on the third
RHS line of Eq.(A23) were already treated in Appendix A 1. Concerning the boundary integral i(A28) over the electric
potential we note that
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er-{er(n(s')X r-s )]:—i 1 . (A24)

Ir-s? aras' |r-¢|

Putting everything together we obtain

Moo de(r’) . 1 , 9 [ aS)B(s') = NA(S')
[V, X B(r)] - & = poola(r)B,(r) = NA(r)] + i larj ar B(r)|r—r’|dv arL r—9] ds

# 1
+f o(s") —dS |.
s aras' |r=¢|

Representing now the left-hand side according to (B4,), applying Eq.(36), and integrating both sides over the angles we
obtain

" da(r’) r' | fRda(r’) Lt
20+1J,

tn(1) = uoo[a(osm(r) A = 371 g SmTar + S S = o [a(Risn(R)

r|+1
A h(RI-——em(R— } (A25)

21+1
Substituting Eqs(A12) and(A21) into Eq. (A25) leads to

1 ("datr’) 0" JRda(r’) o
f dr’ s"r“(r)r' T . odr’ S|m(r)r""ldr

|
tim(r) = M00'|:a(r)slm(r) - ol+1
0

I+1 ™ (R da(r’) A (R rprlel
T 1R2'+1J0 =g Smlrdr + o 1RT+1fO r i (rdr - 2 JO ()
A R i+l pl+l
T+ Jr S tim(r)dr’ = 5 aRisn(R) | (A26)

This is the second radial integral equation for our problem. Therefore, the spherically sym#etyicamo model is reduced
to the two coupled integral equatiofa6) and (A26).

2. Derivation from the radial differential equation system 1
using a Green'’s function method - o+ 1r0 r~= r<ry,
: : . : Gy(r,ro) = (A30)
In this part, we give an alternative approach to establish 1 . -

the integral equationg37) and(38), starting with the radial “orq10 " r=ro.

differential equation problen39)—41).
First, we derive the Green’s functiof(r,ro), corre- As for Eq.(40), we first rewrite it in the form

sponding to Eq(39). This Green'’s function satisfies )
1 dF 110+ (da
oo dr? BT dr

Nim=0,
,U,oo'dl’2 oo 12 drs‘) FoT R im

2
(;:325 = ; ) Gs=48(r —ro), (A27) (A31)

where F=t,,,— uooasy,. This differential equation problem
for t,, can be split into two problems. One of them reads

Gglr0=0, (A28) d?F, 1(1+1) d/ da
N drzl - r2 Fi+ P«o‘Td Sm— dr = Moo, =0,

R 25| 4i6y.m=0. (A29) Fil=r=0. (A32)
R The other is
According to the construction method of Green’s functions d°F, _ I+ 1)F -0
([40], p. 359, we obtainG(r,ro) in the following form: dr? 2 27
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Falr=r = — nooa(R)sm(R). (A33)
For the differential equation problerfA32), applying the
construction method of Green’s functi¢#0] again, we ob-

tain its Green’s function in the form

1 I+1 1+1,.—1 I+
a0 R Tt r=ro
Gt(r!rO): 1
& (¥l p2+1,.-Ky I+
R2|+1(2|+1)(|' R rg -, r=ry,
(A34)
which satisfies
PG, |(|+1)
— - ———G;=0, A35
ar? r2 ot (A35)
Gili=0=0 (A36)
Gt|r:R =0. (A37)

As for the differential equation problei#®33), the solu-
tion can be expressed as

F2:

2 A(R)s(RI. (A38)

R|+l

Then the superposition theorem of the linear problems al-

lows us to obtain the following integral equations &y and

tlm:
R
Sm(r) =- f
0

R
"'Mo(ﬂ\f
0

tim(r) = mooa(r)sim(r)
R d da
- [ sntr0 841 o1

0

G4(r,ro) pooa(r)tim(ro)drg

Gs(r,ro)Sm(ro)dro, (A39)

R rI+1

+ )\Mofff Gi(r,ro)tim(ro)dro — R|_+1,U«00'CV(R)S|m(R)-
0

(A40)

Integrating by parts the terms containing derivatives,gin
Eqg. (A40), we obtain

R
Sm(r) =- f
0

R
+M0ff}\f
0

G4(r,ro) ooa(ro)tim(ro)drg

Gs(r,ro)sm(ro)dro, (A41)

PHYSICAL REVIEW E70, 056305(2004

da(ro) d G((r, I’o)

drg

R
t|m(r)=M00'a(r)54m(r)+fo o0 Sm(ro)—————drg

R [+
+ 7\M00'J Gi(r,ro)tim(ro)dro — R|_+1M00'CY(R)S|m(R)-
0

(A42)
Therefore, we have obtained the same integral equations as
expressed in Eqg37) and (38).
APPENDIX B: SOME NOTATIONS

In this appendix, we define the constantshat are used
in Sec. IV. These are

__Lep+1)

Cl_ - N y
Y

La(a+1)

Cr=- N y

K
Cy=— o et Dlata+ 1) - B(B+1) - yly+ 1],
Y

K
6s= = o BB+ Dlata+ D)= BB+1) +oy+ 1),
Y

__Ly+D
5 Ny ,
Co="— —{B(B+ Dia(a+1) - B(B+1) + y(y+ D]+ Ay

2N,
+Dla(a+ D) +B(B+1) -~ Ay+ DI},

K
Cr=- Nﬁ(ﬁ’f Dia(a+1)-B(B+ 1)+ y(y+1)],
Y

Cs= ——a(a+ D[~ ala+ 1)+ BB+1) + yy+ D],

2N,
K
Co= Nw(w Dla(a+ 1)+ B(B+1) - v(y+1)],
Cio= LOZ(CY"' 1),

Y

L
C11= N—[a(a+ D+BB+1) - yy+ 1],
y

c 2L (@+ 1)
12= - ala )
NV
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C13= (B1)

L
S BB+,
y

In Eq. (B1) we have used the expressions for the Adams-

Gaunt and Elsasser integrals,

27 T
:fo fo Y,Y,Y, sin 6déde,

PHYSICAL REVIEW E 70, 056305(2004)

=J) L el

and the normalization factor

27y(y+1) (y+m)!

IYpdY
—@—X)dadcp, (B2)
de d0

, m#0,
_ 2y+1 (y—-m)!
Y| 4 +1
my(y+1) m=0.
2y+1
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