Sorption of U(VI) on Multiwall Carbon Nanotubes


Sorption of U(VI) on Multiwall Carbon Nanotubes

Schierz, A.; Zaenker, H.; Bernhard, G.

Abstract

Carbon nanotubes (CNTs) are attracting the attention of many scientists due to their unique structural, mechanical, electronic, chemical and biological properties [1]. Large efforts have been attended to improving their synthesis, determining their structure, measuring their properties and finding applications.
The oxidation process is of great importance for CNT application, since it is necessary for CNT purification and functionalization [2]. Acid treatment was recommended as a method of purification [2]: it removes the non-fullerene components and converts the metal catalyst to a more soluble form. Additionally the oxidation causes chemical and/or structural changes on CNTs, which modify their properties.
Due to their hollow and nanosized structure the use of CNTs as adsorbent for pollutants such as dioxin, Cd2+, Pb2+, Am3+ [3, 4, 5] for environmental remediation purposes has been considered. Li et al. [2003] reported that HNO3 oxidized CNTs show a higher sorption capacity for heavy metal ions compared with other adsorbents such as activated carbon. These studies suggested that CNTs may be a promising adsorbent for use in environmental protection. The high cost of CNTs still limits their practical use.
This study is aimed at gaining information on both the properties of the CNTs as a potential adsorbent material in water purification and the behavior of the CNTs as potential carriers of pollutants in the case of their accidental release to the environment. Two aspects are considered: the changes in surface properties after acid treatment and the influence of acid treatment on the sorption of U(VI).
Different methods (FT-IR, SEM, BET, potentiometric titration) were used to study surface properties of Multi Wall CNTs after acid treatment with HNO3/H2SO4. We observed that the acid treatment has a significant effect on the surface properties but not on the morphology of the CNTs.
In this work we report the first data on CNTs as an adsorbent for U(VI) removal. The acid treatment has a great impact on the adsorption capacity of CNTs for U(VI) at different pH values. The sorption capacity of the modified CNTs increases by almost one order of magnitude due to the modification. Under the given conditions, precipitation of U(VI) from solution could be excluded, i.e. the major adsorption mechanism is obviously surface complexation of the uranyl ion. It is well known that U(VI) forms strong complexes with carboxylic groups [6] which have been identified as the major functional surface groups of our modified CNTs.
Investigations into the effect of acid treatment of CNTs on their dispersibility in aqueous solutions simulating natural ground and surface water as well as the transport behavior of CNTs in porous media are underway.

Reference: [1] Tasis et al. 2006, Chem. Rev., 106, 1105; [2] Chiang et al. 2001, J. Phys. Chem. B, 105, 1157; [3] Long and Yang 2001, J. Am. Chem. Soc., 123, 2058; [4] Li et al. 2003, Carbon, 41, 1057; [5] Wang et al. 2005, Environ. Sci. Technol., 39, 2856; [6] Moll et al. 2003, Radiochim. Acta, 91, 11.

Keywords: Carbon nanotubes; manufactured nanoparticles; surface properties

  • Vortrag (Konferenzbeitrag)
    1st International Workshop Aquatic Nanoscience & Nanotechnology, 09.-11.12.2007, Wien, Austria

Permalink: https://www.hzdr.de/publications/Publ-10518