Huge performance increase of Tb-implanted MOS light emitting devices with SiOxNy layers moderating hot carrier effects


Huge performance increase of Tb-implanted MOS light emitting devices with SiOxNy layers moderating hot carrier effects

Rebohle, L.; Sun, J.; Prucnal, S.; Nazarov, A.; Tyagulskii, I.; Helm, M.; Skorupa, W.

Abstract

The electrical stability of Tb-implanted SiO2 light emitting devices was drastically improved by using a SiON dielectric buffer layer. For fabrication thermally grown oxide layers on Si were implanted with Tb followed by a thermal treatment and the deposition of a SiON protection layer by plasma-enhanced chemical vapor deposition. The structures were finally provided with an indium tin oxide front contact and an aluminum rear contact. The incorporation of the SiON layer increases the breakdown electric field from 7.5 to 10.5 MV/cm and enhances the operation time of the light emitters up to three orders of magnitude under constant injection currents. By varying the SiO2 and SiON layer thickness it was found that the largest stability enhancements can be achieved if the SiON layer thickness is more than twice the thickness of the SiO2 layer.
The beneficial role of the SiON layer is mainly explained by reducing the chance of destructive avalanche breakdowns in the oxide layer and by an efficient cooling process of hot electrons moving in the conduction band of SiO2. The latter effect is based on the lower electric fields in SiON as compared to SiO2 and the lower band offset of SiON relative to the gate electrode. In addition, the SiON layer acts as a diffusion barrier against moisture from the working ambient and broadens the operation range of the light emitters on the voltage scale.

Keywords: electroluminescence; Terbium implanted MOS device; Si based light emission; silicon oxynitride

  • Lecture (Conference)
    2008 MRS Fall Meeting, 01.-05.12.2008, Boston, USA

Permalink: https://www.hzdr.de/publications/Publ-12037