Two-phase flow characteristics in the mixing chamber of the effervescent atomizer


Two-phase flow characteristics in the mixing chamber of the effervescent atomizer

Otahal, J.; Hampel, U.; Schleicher, E.; Jicha, M.

Abstract

The article deals with the description of two-phase flow in the mixing chamber of an effervescent atomizer. The first observation has been carried out with the use of high-speed records of the flow inside the mixing tube. The flow in the mixing chamber is very fast and inhomogeneous thus the need to use a high-sampling frequency device has arisen in order to describe changes in the flow. Therefore, an experimental technique has been found which is able to describe the liquid-air distributions in small channels. As a two-phase flow measurement instrument, a miniature wire-mesh conductivity sensor to deal with cross-sections of 8 mm in diameter was designed and built. The frame rate of this sensor is 10 000 images per second. In this study, a special model of a transparent nozzle spraying deionized water that makes use of air as the atomizing medium was used. The effervescent nozzle is of "inside-out gas injection" configuration with the internal diameter of the mixing channel 8 mm. During the experiment, the effervescent atomizer was operated at different air pressure levels ranging from 0.1 to 0.5 MPa and mass GLR (Gas-to-liquid- ratio) from 0.1 to 25%. Mass flow rates of water ranged from 5 up to 65 g·s-1. The results reveal the unstable behavior of two-phase flow in the mixing chamber.

Keywords: effervescent atomizer; two-phase flow; wire mesh sensor

  • Beitrag zu Proceedings
    ILASS Europe 2008 - 22nd European Conference on Liquid Atomization and Spray Systems, 08.-10.09.2008, Como Lake, Italy

Permalink: https://www.hzdr.de/publications/Publ-12041