Plasma immersion ion implantation of fluorine for oxidation-resistant TiAl alloys


Plasma immersion ion implantation of fluorine for oxidation-resistant TiAl alloys

Yankov, R. A.; Kolitsch, A.; Munnik, F.; Donchev, A.; Schütze, M.

Abstract

Titanium aluminides are being used in an expansive variety of advanced applications requiring lightness in weight and retention of strength at elevated temperatures. To date, the upper temperature limit has been at about 700°C because of the poor oxidation resistance of the TiAl alloys at higher temperatures. It has recently been established that the TiAl alloys can be rendered highly resistant to environmental degradation by ion implanting halogens, notably fluorine. In modifying the oxidation properties of the TiAl alloys, strong preference has been given to the technique of plasma immersion ion implantation (PIII) because of the possibility to shorten substantially the implant times as well as to avoid the line-of-sight limitation inherent to the standard beamline implantation process. In this work, various TiAl alloys in the form of either rectangular coupons or actual components have been treated by PIII of fluorine. A cheap, easy-to-handle and environmentally-friendly hydrofluorocarbon (difluoromethane) mixed with argon has been used as the precursor gas to implant fluorine into the TiAl alloys. Energy Dispersive X-ray Analysis, Scanning Electron Microscopy, Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis have been undertaken for sample characterization. Optimum processing windows and conditions have been identified under which the modified TiAl alloys acquire a stable, adherent and highly protective alumina scale against high-temperature oxidation. The degree of oxidation protection has been evaluated by testing F-implanted samples under conditions of both isothermal oxidation and thermal cyclic oxidation in air at temperatures up to 1050°C and for times as long as 6000 hours.

  • Poster
    16th International Conference on Ion Beam Modification of Materials (IBMM’08), 31.08.-05.09.2008, Dresden, Germany

Permalink: https://www.hzdr.de/publications/Publ-12089