Tilting of self-organized layered arrays of encapsulated metal nanoparticles in C:Ni nanocomposite films by means of hyperthermal ion deposition


Tilting of self-organized layered arrays of encapsulated metal nanoparticles in C:Ni nanocomposite films by means of hyperthermal ion deposition

Abrasonis, G.; Oates, T. W. H.; Kovacs, G. J.; Grenzer, J.; Persson, P. O. A.; Heinig, K. H.; Martinavicius, A.; Jeutter, N.; Baehtz, C.; Grötzschel, R.; Tucker, M.; Rosen, J.; Bilek, M. M. M.; Möller, W.

Abstract

Self-organization at the nanoscale is a key issue in modern material science as it promises a potential route to commercially scalable production of functional nanomaterials. Here we present the growth-structure study of self-organized layered arrays of carbon encapsulated Ni nanoparticles grown by means of pulsed filtered cathodic vacuum arc deposition. Influence of the oblique ion incidence and Ni content on the film morphology is investigated. The film morphology has been determined by transmission electron microscopy (TEM) and grazing incidence small angle x-ray scattering (GISAXS) while C/Ni ratio was determined by means of nuclear reaction analysis. The C:Ni films with the Ni content in the range of ~6-50 at.% are considered. The results show that for the perpendicular incoming depositing ion incidence the C:Ni film structure consists of alternating self-organized nickel carbide and carbon layer oriented parallel to the film surface. However, for the oblique ion incidence the layered structure tilts in relation to the surface. The tilting angle and periodicity strongly depends on the deposition angle as well as on the Ni content. Combined TEM and GISAXS analysis shows that the film cross-sections can be described by two density modulation waves advancing with the growing film surface – one towards the incoming ions, another one with the weaker amplitude moving in roughly perpendicular direction. The results are discussed on the basis of the interplay between thermodynamically driven phase separation and energetic ion induced ballistic effects. Such structures show significant anisotropy which can be considered for tribological, optical, magnetic or magnetotransport applications.

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    ICMCTF 2010 38th International Conference on Metallurgical Coatings & Thin Films, 02.-06.05.2010, San Diego, California, United States of America

Permalink: https://www.hzdr.de/publications/Publ-14339