Experimental challenges of Traveling-wave Thomson Scattering


Experimental challenges of Traveling-wave Thomson Scattering

Debus, A.; Steiniger, K.; Siebold, M.; Jochmann, A.; Irman, A.; Bussmann, M.; Schramm, U.; Cowan, T.; Sauerbrey, R.

Abstract

Traveling-wave Thomson scattering is a novel interaction design that allows circumventing the Rayleigh limit in optical undulators, which is interesting for possible realizations of Thomson scattering sources with photon yields per pulse that are 2-3 orders of magnitudes beyond current designs. Here we present details on how a Traveling-wave setup has to be implemented in experiment. An emphasis is put on the use of varied-line spacing (VLS) gratings for spatio-temporal beam shaping at large interaction angles to achieve optimal overlap. At the FZD we are using the high-power laser system DRACO (250TW) to realize a Thomson source with electrons from the linear accelerator ELBE or laser-plasma accelerated electrons. We present the current status and further progress towards a head-on Thomson source and a Traveling-Wave Thomson scattering source aiming for high photon yields per pulse.

Keywords: Traveling-wave Thomson scattering; TWTS; X-ray; VLS gratings; Thomson source

  • Poster
    DPG Frühjahrstagung Münster 2011, 21.-25.03.2011, Münster, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-15471