Biofilms growing in an underground Uranium mine


Biofilms growing in an underground Uranium mine

Zirnstein, I.; Gagell, C.; Arnold, T.; Krawczyk-Bärsch, E.; Röske, I.

Abstract

The eukaryotic diversity of biofilm microorganisms in the underground uranium mine Königstein in Saxony/Germany was studied by molecular methods and microscopy. The Königstein mine is currently in the process of remediation. Due to technical leaching with sulphuric acid, the mine water is characterized by low pH, high concentrations of toxic heavy metals and uranium (up to 3×10-4 M) (Arnold et al. 2010). Biofilms in the Königstein mine grew underground in the mine galleries in a depth of 250 m (50 above sea level) either as stalactite-like slime communities or as acid streamers in the drainage channels. Previously conducted studies on the bacterial diversity in both biofilm communities in the uranium mine Königstein showed that beta-proteobacterium affiliated with Ferrovum myxofaciens, also designated “Ferribacter polymyxa” were identified as dominating bacterial species (Brockmann et al. 2010).
Biofilms are not only composed of bacteria, but may also include archaea and eukaryotic organisms. The eukaryotic diversity of the Königstein biofilms was analysed by molecular methods, i.e. 18S rDNA PCR, cloning and sequencing, which were used to determine the DNA-fragments of the microorganism, and by microscopic investigations. It was found that the eukaryotic biofilm communities of the Königstein environment showed a limited number of different heterotrophic species and consist of a variety of lineages belonging to nine major taxa: Ciliates, Flagellates, Amoebae, Heterolobosea, Fungi, Apicomplexa, Stramenopiles, Rotifers and Arthropoda and in addition a large number of uncultured eukaryotes, denoted as acidophilic eukaryotic cluster (AEC). As dominant eukaryotic species in the underground Königstein environment were identified Vahlkampfia species, Bodo species, and Oxytricha species. Flagellates, e.g. Bodo saltans, Stramenopiles, e.g. Diplophrys archeri and Rotifers were discovered for the first time in acid mine drainage (AMD) milieus characterized by high concentrations of uranium.
These eukaryotes in the studied biofilms are part of a biofilm community and represent a cycle of a food chain. This study shows that not only bacteria and archaea were identified in extreme AMD environments, but also eukaryotic species were found. These observed eukaryotes may influence significantly carbon cycling and metal immobilization within biofilms.

Keywords: Eukaryote; uranium; acid mine drainage; biofilm; microbial diversity; snottite; acid streamer; 18S rDNA PCR; Light microscopy

  • Vortrag (Konferenzbeitrag)
    10th symposium on remediation, 04.-05.10.2011, Jena, Germany

Permalink: https://www.hzdr.de/publications/Publ-16037