Millisecond flash lamp annealed GaAs: a promising light emitter material at 1.3 um


Millisecond flash lamp annealed GaAs: a promising light emitter material at 1.3 um

Gao, K.; Prucnal, S.; Jiang, Z.; Skorupa, W.; Helm, M.; Yastrubchak, O.; Gluba, L.; Zhou, S.

Abstract

Gallium arsenide based materials have outstanding performances in light-emitting devices and are being widely used in optical communication devices in virtue of their remarkable efficiency and thermal stability.
We present a novel method to achieve the 1.3 um light emitting by defect-induced luminescent centers. Mn-implanted and N-implanted GaAs as well as un-doped GaAs wafers were treated by millisecond flash lamp annealing techniques. The optical properties of the samples were investigated. Results have shown the successful incorporation of Mn and N into GaAs lattice. For the intrinsic and the N-incorporated GaAs, a strong luminescence peak occurs at 1.3 um. On the other hand, Mn-doping has suppressed this luminescence. It is still noticeable that the 1.3 um light emitting only have a slight redshift (about 20 nm) and 58% intensity decline as the temperature rises from 20 K to room temperature. Our investigation suggests that after flash lamp annealing GaAs based materials exhibit a promising prospect on applications of light emitters and detectors for optical communication devices.

Keywords: GaAs; ion-implantation; flash lamp annealing; 1.3 um luminescence

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    76. Jahrestagung der DPG und DPG-Frühjahrstagung, 25.-30.03.2012, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-17230