Ultrasound investigations of spin-ice materials


Ultrasound investigations of spin-ice materials

Erfanifam, S.; Zherlitsyn, S.; Wosnitza, J.; Moessner, R.; Petrenko, O. A.; Balakrishnan, G.; Zvyagin, A. A.

Abstract

The elastic properties of spin-ice materials Dy2Ti2O7 and Ho2Ti2O7 have been studied for different longitudinal and transverse acoustic modes in a temperature range from 20 mK to 300 K and magnetic fields applied along various crystallographic directions up to 17.5 T. The sound velocity and the sound attenuation exhibit a number of anomalies versus applied magnetic field at temperatures below the “freezing” temperature. In Dy2Ti2O7 compound, most notable are peaks in the sound velocity, which exhibit two distinct regimes: an intrinsic (extrinsic) one in which the data collapse for different field sweep rates when plotted as function of field strength (time). The intrinsic regime involves the release of Zeeman energy from spins, the extrinsic one, transfer of energy out of the sample. At B = 1.25 T additionally a sharp drop in the sound velocity can be seen. This can indicate a 1st-order phase transition from a low-density monopole state to the highdensity monopole state. We discuss our observations in context of the emergent quasiparticles which govern the low-temperature dynamics of the spin ice.

Beteiligte Forschungsanlagen

  • Hochfeld-Magnetlabor (HLD)
  • Poster
    International Workshop on Strongly Correlated Electron systems in high magnetic Fields (SCEF), 20.-25.05.2012, Les Houches, France
  • Poster
    Quantum Criticality & Novel Phases 2012 (QNCP12), 26.-29.08.2012, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-17239