Two Novel Sigma-1 Receptor PET Radiotracers with Favorable Imaging Properties: Evaluation in Nonhuman Primates


Two Novel Sigma-1 Receptor PET Radiotracers with Favorable Imaging Properties: Evaluation in Nonhuman Primates

Cai, Z.; Baum, E.; Bois, F.; Holden, D.; Lin, S.; Lara-Jaime, T.; Kapinos, M.; Chen, Y.; Deuther-Conrad, W.; Fischer, S.; Wünsch, B.; Brust, P.; Jia, H.; Huang, Y.

Abstract

Objectives: Sigma-1 receptors (Sig-1Rs) are intramolecular chaperone proteins, the abnormal expression of which has been indicated in a variety of CNS disorders [1]. As a result, Sig-1R is proposed as a therapeutic target for schizophrenia, depression, and Alzheimer’s disease. PET imaging of S1Rs would provide an in vivo tool to investigate the involvement of Sig-1Rs in these diseases, and to assist in drug development. Hence, great efforts have been devoted to the development of effective PET radiotracers for Sig-1Rs, though most have failed to reach the human evaluation stage due to unfavorable pharmacokinetic and imaging properties. Through our Sig-1R PET ligand discovery programs, we have identified a number of spirocyclic piperidine analogs with attractive characteristics for development as in vivo imaging agents [2-4]. The objective of this study was to evaluate the two most promising ligands in rhesus monkeys in preparation for clinical translation.
Methods: The two 18F-labeled radiotracers (1 and 2) were prepared by nucleophilic displacement of the tosylate on the precursors and evaluated in the same rhesus monkeys (n = 2). Baseline scans of 4-h duration were obtained on a FOCUS 220 scanner after injection of ~5 mCi radioactivity. Blocking scans were performed with pre-administration of the selective Sig-1R agonist SA4503. Arterial blood was collected at pre-selected time points for measurement of plasma activity and HPLC analysis of radiometabolites to generate the plasma input functions for the parent tracer. Analysis of regional brain time-activity curves (TACs) was performed with one-tissue (1T), two-tissue (2T), and the multilinear analysis-1 (MA1) models to estimate kinetic parameters and regional volumes of distribution (VT). Tracer free fraction (fP) in plasma was measured via ultrafiltration method. Log D of each radiotracer was determined by the shake-flask method.
Results: Radiotracer 1 and 2 were prepared in high radiochemical purity and specific activity. In rhesus monkeys both tracers displayed moderate rates of metabolism, with 35% and 19% of parent fraction for 1 and 2 at 60 min post-injection. Plasma fP values were 2% and 17% for 1 and 2, in line with their respective measured Log D values of 2.8 and 2.5. Both radiotracers exhibited excellent brain uptake (peak SUV > 4) and fast tissue kinetics (activity peaked in all regions at <30 min post-injection) (Fig. 1). Both the 1T and MA1 models provided good fits of regional TACs and reliable VT estimates. Overall, ligand 2 displayed higher uptake levels, greater differential uptake among brain regions and higher regional VT values than 1. SA4503 (0.5 mg/kg. iv) blocked ~85% (1) and ~95% (2) of radiotracer uptake, indicating the binding specificity of both radiotracers in the monkey brain.
Conclusions: The novel Sig-1R radiotracers 1 and 2 display excellent brain uptake, fast tissue kinetics, and high levels of specific binding in vivo. Both have proved to be suitable for the imaging and quantification of Sig-1R in the monkey brain, therefore, further evaluation in humans is warranted. In comparison, tracer 2 has a ten-fold higher fP, higher brain uptake, and greater VT values in rhesus monkey.
Figure 1. TACs of ligands 1 and 2 in selected monkey brain regions with and without blocking.
References.
1. Maurice T and Su T-P, Pharmacol Ther, 2009. 124:195.
2. Brust P et al., J Nucl Med, 2014. 55:1730.
3. Li Y et al., J Med Chem, 2013. 56:3478.
4. Chen Y-Y et al., Bioorg Med Chem, 2014. 22:5270.

  • Vortrag (Konferenzbeitrag)
    11th International Symposium on Functional NeuroReceptor Mapping of the Living Brain, 13.-16.07.2016, Boston, USA

Permalink: https://www.hzdr.de/publications/Publ-23329