Concepts for the development of new biosorbents on the base of microbial constituents


Concepts for the development of new biosorbents on the base of microbial constituents

Matys, S.; Schönberger, N.; Raff, J.; Günther, T.; Lederer, F.; Lehmann, F.; Flemming, K.; Pollmann, K.

Abstract

The world's growing demand for high-tech metals together with a simultaneously deteriorating availability is one of the central challenges of our modern society. Thusly, the development of new and innovative processes for a more efficient extraction of raw materials as well as economic methods for recycling is needed. Established methods for reclaiming production residues often include the chemical treatment with concentrated acids or alkalis, and are also polluting and energy-intensive. To overcome existing deficiencies and disadvantages of such methods emphasis is increasingly placed on biological alternatives. Thereby, biosorptive materials are prevalent for the recovery of dissolved chemical species. They are inexpensive and manufacturable in large quantities and often have excellent binding properties as compared to synthetic materials. Microorganisms are particularly in focus for biosorption processes because of their ubiquity and their enormous variability. A number of microbial cell structures and metabolites have been developed evolutionarily in direct interaction with toxic or essential elements, including heavy metals. Mediated by a variety of functional groups combined with the perfect structural fit these molecules are able to bind such elements partially highly selective and specific. In our group we are investigating the potential suitability of biomolecules such as siderophores, short peptides, and S-layer proteins as biosorptive compound. Our presentation discusses the usability of these compounds for the development of novel, selective binding filter materials for removing toxic elements and the recovery of valuable metals from aqueous solutions.

Keywords: biosorption; bioremediation; metal recovery; siderophores; peptides; S-layer proteins

  • Poster
    VAAM 2016, 13.-16.03.2016, Jena, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-23353