Commissioning of a Compton Camera for particle beam range monitoring


Commissioning of a Compton Camera for particle beam range monitoring

Thirolf, P. G.; Aldawood, S.; Böhmer, M.; Bortfeldt, J.; Castelhano, I.; Dedes, G.; Enghardt, W.; Fiedler, F.; Gernhäuser, R.; Golnik, C.; Helmbrecht, S.; Hueso-González, F.; Kolff, H. V. D.; Kormoll, T.; Lang, C.; Liprandi, S.; Maier, L.; Marinšek, T.; Miani, A.; Pausch, G.; Petzoldt, J.; Pocevicius, M.; Römer, K.; Schaart, D. R.; Valencia-Lozano, I.; Parodi, K.

Abstract

A Compton camera prototype for the position-sensitive detection of prompt γ rays from nuclear reactions between proton (or ion) beams and organic targets is being commissioned in Garching. The detector system is designed to allow for reconstructing the γ-source position from the Compton scattering kinematics of the primary photon as well as from tracking the Compton-scattered electron trajectory. The camera consists of a monolithic LaBr3(Ce) scintillation absorber crystal, read out by a 256-fold segmented multi-anode PMT and preceded by a stacked array of 6 double-sided silicon strip detectors acting as scatterers. The detector system has been calibrated and characterized in the laboratory as well as at different accelerator facilities, including clinical proton beams. Results from online commissioning runs will be presented, demonstrating excellent agreement between experimental prompt-γ spectra and Monte-Carlo simulations. Particular effort was dedicated to characterize the spatial resolution achievable with the monolithic LaBr 3 (Ce) scintillator when targeting the primary photon interaction position. Intense, tightly collimated 137Cs and 60Co sources were used for 2D irradiation scans as prerequisite for studying the performance of the “k-Nearest Neighbour”-algorithm developed in Delft and extending its applicability into the energy range beyond 511 keV. Systematic results of the monolithic scintillator’s spatial resolution will be presented as a function of the k-NN parameters (e.g. events per irradiation position) and the PMT segmentation, resulting in the realization of the presently optimum spatial resolution (3.8(2) mm @1.3 MeV) already for a reduced PMT segmentation (8x8). An outline of ongoing and planned further experimental activities and upgrade plans will be presented.
This work is supported by the DFG Cluster of Excellence MAP (Munich-Centre for Advanced Photonics).

Keywords: in-vivo dosimetry; prompt gamma; proton therapy; ion beam therapy; compton camera; cancer; radiooncology; imaging

  • Beitrag zu Proceedings
    2016 IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE NSS/MIC), 29.10.-06.11.2016, Strasbourg, France

Permalink: https://www.hzdr.de/publications/Publ-23623