Ionizing Radiation Measurements from Interaction of MEC Laser (0.7 J, 10^19 W/cm2) with Cu and Ni Targets


Ionizing Radiation Measurements from Interaction of MEC Laser (0.7 J, 10^19 W/cm2) with Cu and Ni Targets

Liang, T.; Bauer, J.; Blaha, J.; Cimeno, M.; Ferrari, A.; Liu, J.; Rokni, S.; Woods, M.

Abstract

Laser system upgrades at SLAC Matter in Extreme Conditions (MEC) have increased the potential dose levels generated from laser-matter interactions at LCLS Hutch 6. In July 2014, the 800 nm Ti:sapphire MEC laser operated at 0.7 J with an intensity of 1.0 10^18 W/cm2, and shots were taken on Cu foils and a Ni nanowire target. In August 2014, MEC scientists utilized a deformable mirror improve the laser spot size to achieve an intensity of 1.0 10^19 W/cm2 with 0.7 J, and laser shots were again taken on Cu foil and Ni nanowire. During both experiments, passive (nanoDot, RADOS, 2 mR PIC) and active (Victoreen 451, BF3) detectors were deployed inside and outside the target chamber to measure ionizing radiation from laser shots on Cu and Ni targets, and measurements from active and passive detectors agree. No local cone shielding was in place at MEC during radiation measurements.

Keywords: laser induced ionizing radiation

  • Bericht, sonstiger
    SLAC National Accelerator Laboratory, USA: SLAC RADIATION PHYSICS NOTE RP-14-23, 2014
    23 Seiten

Permalink: https://www.hzdr.de/publications/Publ-23706