Impact of Self-Trapped Excitons on Blue Photoluminescence in TiO2 Nanorods on Chemically Etched Si Pyramids


Impact of Self-Trapped Excitons on Blue Photoluminescence in TiO2 Nanorods on Chemically Etched Si Pyramids

Saini, C. P.; Barman, A.; Banerjee, D.; Grynko, O.; Prucnal, S.; Gupta, M.; Phase, D. M.; Sinha, A. K.; Kanjilal, D.; Skorupa, W.; Kanjilal, A.

Abstract

Temperature-dependent photoluminescence (PL) of titanium oxide (TiO2) shows an evolution of blue emission when exposed to 50 keV At+ ions. The origin of observed PL has been examined by X-ray absorption near-edge spectroscopy (XANES) at Ti-K,L and O-K edges, revealing the reduction of ligand field splitting owing to the formation of oxygen vacancies (OVs) by destroying TiO6 octahedral symmetry. Detailed PL and XANES analyses suggest that the fluence (ions/cm(2)) dependent increase in OVs not only boosts the conduction electrons but also increases the density of holes in localized self-trapped exciton (STE) states near the valence band. Based on these observations, we propose a model in which doped conduction electrons are recombining radiatively with the holes in STE states for blue light emission.

Keywords: titanium oxide; ion implantation; photoluminescence; X-ray absorption near-edge spectroscopy; oxygen vacancy; localized self-trapped exciton

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-25740