Coupling of ferromagnetism and structural phase transition in V2O3/Co bilayers


Coupling of ferromagnetism and structural phase transition in V2O3/Co bilayers

Wang, C.; Xu, C.; Wang, M.; Yuan, Y.; Liu, H.; Dillemans, L.; Homm, P.; Menghini, M.; Locquet, J.-P.; Haesendonck, C. V.; Zhou, S.; Ruan, S.; Zeng, Y.-J.

Abstract

Interfacial coupling in hybrid magnetic heterostructures is being considered as a unique opportunity for functional material design. Here, we present the temperature dependence of magnetic properties of V2O3/Co bilayers influenced by the structural phase transition that is accompanied by a metal–insulator transition in V2O3. Both the coercivity and the magnetization of Co layer are strongly affected by the interfacial stress due to the magnetostrictive effect in the ferromagnetic film. The observed change in coercivity is as large as 59% in a narrow temperature range. The changes in the magnetic properties are reproducible and reversible, which are of importance for potential applications.

Keywords: metal–insulator transition; magnetostrictive coupling; structural phase transition; heterostructure

Downloads

Permalink: https://www.hzdr.de/publications/Publ-26371