Publikationsrepositorium - Helmholtz-Zentrum Dresden-Rossendorf

1 Publikation

Slow positron annihilation studies of Pd-Mg multilayers

Hruška, P.; Čížek, J.; Bulíř, J.; Lukáč, F.; Anwand, W.; Liedke, M. O.; Fekete, L.; Melikhova, O.; Lančok, J.

Abstract

Palladium is well known for its excellent hydrogen absorption kinetics. The gravimetric hydrogen absorption capacity of Pd is however only 0.93 wt. %. Magnesium exhibits a high hydrogen absorption capacity up to 7.6 wt. %, however the hydrogen absorption kinetics is slow. The aim of this work was to create thin Pd-Mg multilayered films combining positive hydrogen absorption properties of both elements. Pd-Mg multilayers were deposited by RF magnetron sputtering on fused silica substrates coated with 100 nm thick Pd wetting layer. The multilayers consist of alternating Pd and Mg layers (3, 12 and 60) of the same thickness. Three types of Pd-Mg multilayers were compared: (i) as deposited samples, (ii) hydrogen gas loaded samples at room temperature and H2 pressure of 4000 Pa for 2 h, (iii) samples annealed up to 450°C under Ar atmosphere. Defect structure of Pd-Mg multilayers was characterized using variable energy positron annihilation spectroscopy. Doppler broadening of the annihilation photopeak was analyzed using the S and W line-shape parameters and the measured S(E) curves were fitted using the VEPFIT code. The development of the structure during the annealing of the films was monitored by in-situ X-ray diffraction. Atomic force microscopy was employed for the study of the surface morphology. All films were characterized by nanocrystalline structure with a high density of grain boundaries with open-volume defects capable of positron trapping. The density of grain boundaries is determined by the mean grain size which increases with increasing thickness of a single phase layer. Hydrogen loading led to buckling of the film and introduced additional defects into the film. Annealing of the multilayers leads to diffusion of Mg atoms into the Pd layers and precipitates of Mg-Pd phase are formed.

Keywords: PAS; slow positron beam; positron annihilation spectroscopy; Pd; Mg; multilayers

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Vortrag (Konferenzbeitrag)
    The International Workshop on Positron Studies and Defects 2017 (PSD-17), 03.-08.09.2017, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-26637