Nε-Acryloyllysine piperazides as irreversible inhibitors of transglutaminase 2 – synthesis, structure-activity relationships and pharmacokinetic profiling


Nε-Acryloyllysine piperazides as irreversible inhibitors of transglutaminase 2 – synthesis, structure-activity relationships and pharmacokinetic profiling

Wodtke, R.; Hauser, C.; Ruiz-Gómez, G.; Jäckel, E.; Bauer, D.; Lohse, M.; Wong, A.; Pufe, J.; Ludwig, F.-A.; Fischer, S.; Hauser, S.; Greif, D.; Pisabarro, M. T.; Pietzsch, J.; Pietsch, M.; Löser, R.

Abstract

Transglutaminase 2 (TGase 2)-catalysed transamidation represents an important posttranslational mechanism for protein modification with implications in physiological and pathophysiological conditions including fibrotic and neoplastic processes. Consequently, this enzyme is considered a promising target for the diagnosis and therapy of these diseases. In this study, we report on the synthesis and kinetic characterisation of Nε-acryloyllysine piperazides as irreversible inhibitors of TGase 2. Systematic structural modifications on 54 new compounds were performed with a major focus on fluorine-bearing substituents due to the potential of such compounds to serve as radiotracer candidates for positron emission tomography. The determined inhibitory activities ranged from 100-10000 M-1s-1, which resulted in comprehensive structure-activity relationships. Structure-activity correlations using various substituent parameters accompanied by covalent docking studies provide an advanced understanding of the molecular recognition for this inhibitor class within the active site of TGase 2. Selectivity profiling of selected compounds for other transglutaminases demonstrated an excellent selectivity towards transglutaminase 2. Furthermore, an initial pharmacokinetic profiling of selected inhibitors was performed including the assessment of potential membrane permeability and liver microsomal stability.

Downloads

Permalink: https://www.hzdr.de/publications/Publ-27127