Model-driven parameter reconstructions from Small Angle X-ray Scattering images


Model-driven parameter reconstructions from Small Angle X-ray Scattering images

Zacharias, M.

Abstract

The diagnostic of plasma dynamical processes at solid densities and at the time and length scales involved in the formation of instabilities has become accessible in experiments by coherent X-ray scattering techniques through the advent of X-ray free-electron lasers. In this thesis, models for the density of structured targets under the influence of plasma expansion are studied. A general analytical derivation of the scattering signal of such targets is given and it is investigated what kind of statements regarding the expansion profile can be made based on data analyses that comprise various parametrical density models. To enable numerical investigations of experimental X-ray intensities with reduced parametrical density models, a framework has been designed in Python. The operability of the framework is demonstrated with data from experiments. Based on the results, statistically robust multi-model reconstructions of the plasma density that use the presented framework are envisioned.

Keywords: SAXS; small angle X-ray scattering; XFEL; reconstruction; plasma; numerical; Python

  • Master-Arbeit
    TU Dresden, 2017
    Mentor: Dr. Thomas Kluge, Dr. Michael Bussmann, Prof. Dr. Ulrich Schramm, Prof. Dr. Thomas E. Cowan
    0090 Seiten
    DOI: 10.5281/zenodo.1208410

Permalink: https://www.hzdr.de/publications/Publ-27284