Design, validation and testing of new receiver coatings for concentrated solar power


Design, validation and testing of new receiver coatings for concentrated solar power

Krause, M.; Heras, I.; Lungwitz, F.; Wenisch, R.; Schumann, E.; Janke, D.; Guillén, E.; Munnik, F.; Azkona, I.; Gemming, S.; Escobar-Galindo, R.

Abstract

Increasing central receiver solar plant’s operation temperature from 550°C to about 800°C would improve the energy conversion efficiency by 15 to 20%. Absorber coatings appropriate for such conditions have to outperform the state-of-the-art pigment paint Pyromark® that has an absorptivity α > 95% but a high emittance (ε ~ 80%). The development of environmentally stable solar-selective coatings (SSC) for these temperatures requires new concepts of design and thermal testing. Multilayer SSC based on [AlyTi1-y(OxN1-x)] absorbers were designed after an extensive microstructural characterization and optical simulations. Based on excellent simulation performance values of α = 88-94% and εRT = 4.8-13.6%, complete coating stacks were experimentally validated and tested in vacuum and in air up to temperatures of 800°C [1]. Thermal stability in vacuum up to 800°C is shown by in situ Rutherford backscattering spectrometry (RBS), Raman spectroscopy and spectroscopic ellipsometry (SE) for individual layers as well as for complete SSC. Regarding in-air stability, the most stable SSC fulfilled the standard performance criterion PC ≤ 5% for 300 symmetric, 3 hours long cyclic tests between 300°C and 600°C. Another promising and simpler coating concept to be presented is based on a metal-doped transparent conductive oxide acting as solar-selective transmitter on top of a blackbody. The onset of the infrared reflectivity is tuneable by variation of the parameters during reactive magnetron sputtering deposition, thus matching the specific temperature requirements during solar applications. Thermal stability up to 800°C in vacuum is demonstrated by in situ RBS and SE.

Financial support by the EU, grant No. 645725, project FRIENDS2, and the HGF via the W3 program (S.G.) is gratefully acknowledged.

[1] I. Heras, et al. , Design of high-temperature solar-selective coatings based on aluminium titanium oxynitrides [AlyTi1-y(OxN1-x)]. Part 1: Advanced microstructural characterisation and optical simulation. Solar Energy Materials and Solar Cells 176 (2018) 81-92

Keywords: Solar selective coatings; oxynitrides; TCO's; thermosolar energy; in situ analysis; cluster tool

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Eingeladener Vortrag (Konferenzbeitrag)
    5th European Conference in Nanofilms (ECNF), 20.-22.03.2018, Cranfield, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-27553