Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR


Experimental platform for the investigation of magnetized-reverse-shock dynamics in the context of POLAR

Albertazzi, B.; Falize, E.; Pelka, A.; Brack, F.; Kroll, F.; Yurchak, R.; Brambrink, E.; Mabey, P.; Ozaki, N.; Pikuz, S.; van Box Som, L.; Bonnet-Bidaud, J. M.; Cross, J. E.; Filippov, E.; Gregori, G.; Kodama, R.; Mouchet, M.; Morita, T.; Sakawa, Y.; Drake, R. P.; Kuranz, C. C.; Manuel, M. J.-E.; Li, C.; Tzeferacos, P.; Lamb, D.; Schramm, U.; Koenig, M.

Abstract

The influence of a strong external magnetic field on the collimation of a high Mach number, plasma flow and its collision with a solid obstacle is investigated experimentally and numerically. The laser irradiation (I ∼ 2 × 1014 W cm−2) of a multilayer target generates a shock wave that produces a rear side plasma expanding flow. Immersed in a homogeneous 10 T external magnetic field, this plasma flow propagates in vacuum and impacts an obstacle located a few mm from the main target. A reverse shock is then formed with typical velocities of the order of 15–20 ± 5 km/s. The experimental results are compared with 2D radiative MHD simulations using the FLASH code. This platform allows investigating the dynamics of reverse shock, mimicking the processes occurring in a cataclysmic variable of polar type.

Keywords: accretion processes; high-power laser; hydrodynamics; laboratory astrophysics; polar; radiative shocks

Permalink: https://www.hzdr.de/publications/Publ-27587