Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland


Post-Younger Dryas fault instability and deformations on ice lineations in Finnish Lapland

Sutinen, R.; Andreani, L.; Middleton, M.

Abstract

The Younger Dryas phase, which occurred between 12.8 and 11.5 ka as a part of the cyclic pattern of global climatic changes, was concurrent with maximum fault instability (13–10 ka) in the Fennoscandian shield. Ice lineations, indicative of glacial streaming toward the Younger Dryas end moraines (YDEMs), may have faced earthquake impacts within the glacial isostatic adjustment (GIA). Morphometric analyses for airborne laser scanning (ALS) revealed that ice lineations were deformed subglacially and subaerially in Finnish Lapland. The subglacial water outburst flows diagonally eroded the drumlins, 50 km from the YDEMs in Utsjoki, northern Finnish Lapland. Similarly north, in the Sevetti area, 40 km from the YDEMs a large portion of the ice lineations were entirely distorted by the subglacial squeeze-up Pulju moraine and liquefaction bowl formations. In the interior part of the Fennoscandian Ice sheet (FIS) in Kemijärvi, representing onset of an ice-stream fan 200 km from the YDEMs, mass flows had reworked the ice lineations. Based on the electrical-sedimentry anisotropy, mass flow sediments deviated from the ice flow pattern. Postglacial liquefaction craters were created on the drumlins in Utsjoki and also in Kuusamo, eastern Finnish Lapland, 70 km from the YDEMs in Russian Karelia. We interpret these features as indications of paleoseismic events associated with GIA.

Keywords: Lidar DEM; Pulju moraine; Liquefaction; Mass flow

Downloads

Permalink: https://www.hzdr.de/publications/Publ-27851