On the use of stacks of fission-like targets for neutron capture experiments


On the use of stacks of fission-like targets for neutron capture experiments

Guerrero, C.; Lerendegui-Marco, J.; Eberhardt, K.; Düllmann, C. E.; Junghans, A.; Lommel, B.; Mokry, C.; Quesada, J. M.; Runke, J.; Thörle-Pospiech, P.; The N_Tof Collaboration

Abstract

The measurement of neutron induced reactions on unstable isotopes is of interest in many fields, from nuclear energy to astrophysics or applications; in particular transuranic isotopes are essential for the development of innovative nuclear reactors and for the management of the radioactive waste. In such measurements, the quality of the associated radioactive target is crucial for the success of the experiment, but in many cases the geometry, amount of mass and encapsulation of the target are not optimal, leading to limited results. In this work we propose to produce high quality radioactive targets for capture as a stack of thin targets using the techniques usually employed for fission measurements. In particular, we have succeeded in making a 242Pu target of nearly 100 mg by combining seven thin (~1 mg/cm2) fission-like targets with 45 mm in diameter achieving a total backing thickness of only 70 m of aluminum. The target has been shown to perform successfully in experiments at both a neutron time-of-flight facility (n_TOF at CERN) and a thermal neutron beam (BRR at KFKI), providing the most accurate data from thermal up to 250 keV to date.

Permalink: https://www.hzdr.de/publications/Publ-28781