Limited importance of EphrinA1–ligand, Src kinase, and focal adhesion kinase in EphA2-mediated regulation of metastasis in Mel-Juso and A375 human melanoma cells


Limited importance of EphrinA1–ligand, Src kinase, and focal adhesion kinase in EphA2-mediated regulation of metastasis in Mel-Juso and A375 human melanoma cells

Neuber, C.; Herwig, N.; Pietzsch, J.; Belter, B.

Abstract

EphA2 receptor tyrosine kinase fulfils various functions in the development of cancers. Here we analyzed how regulation of EphA2 receptor influences metastatic properties in human melanoma cells in vitro and lung metastasis in vivo. Further, we investigated whether the effects are mediated by Src kinase/focal adhesion kinase (FAK) signaling downstream of EphA2. Therefore, as model Mel-Juso and A375 melanoma cell lines showing different intrinsic EphA2 expression levels were used. To regulate EphA2 expression and activity, we used RNA interference, transgeneic EphA2 overexpression, and stimulation of EphA2 activity by adding EphrinA1. Adhesion to fibronectin was increased in EphA2-silenced cells and decreased in EphA2-overexpressing cells. Migration and planar motility were unaffected in Mel-Juso cells, but increased in EphA2-silenced A375 cells and decreased in EphA2-overexpressing A375 cells. Adhesion and migration were unaffected by EphrinA1-stimulation, indicating ligand-independent mechanisms. In vivo we detected increased lung metastasis in mice inoculated with EphA2-overexpressing Mel-Juso cells, substantiating the pro-metastatic effects of EphA2 in melanoma. Activity of Src kinase and FAK were unaffected in EphA2-silenced cells and in response to EphrinA1-stimulation. However, in EphA2-overexpressing A375 cells Src phosphorylation was increased, indicating enhanced Src activity. Together, these data suggest that EphA2 receptor promotes malignancy ligand-independently by mechanisms different from Src kinase/FAK signaling.

Keywords: Cellular adhesion; cellular migration; Eph receptor tyrosine kinases; Ephrins; malignant skin cancer; metastatic melanoma; RNA interference

Permalink: https://www.hzdr.de/publications/Publ-28943