Charge-Exchange-Driven Low-Energy Electron Splash Induced by Heavy Ion Impact on Condensed Matter


Charge-Exchange-Driven Low-Energy Electron Splash Induced by Heavy Ion Impact on Condensed Matter

Schwestka, J.; Niggas, A.; Creutzburg, S.; Kozubek, R.; Heller, R.; Schleberger, M.; Wilhelm, R. A.; Aumayr, F.

Abstract

Low-energy electrons (LEEs) are of great relevance for ion-induced radiation damage in cells and genes. We show that charge exchange of ions leads to LEE emission upon impact on condensed matter. By using a graphene monolayer as a simple model system for condensed organic matter and utilizing slow highly charged ions (HCIs) as projectiles, we highlight the importance of charge exchange alone for LEE emission. We find a large number of ejected electrons resulting from individual ion impacts (up to 80 electrons/ion for Xe40+). More than 90% of emitted electrons have energies well below 15 eV. This “splash” of low-energy electrons is interpreted as the consequence of ion deexcitation via an interatomic Coulombic decay (ICD) process.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-29666