Direct Imaging of Distorted Vortex Structure and Vortex-Antivortex Mediated Vortex Annihilation In Exchange Coupled Ferromagnetic/Antiferromagnetic Disk Structures


Direct Imaging of Distorted Vortex Structure and Vortex-Antivortex Mediated Vortex Annihilation In Exchange Coupled Ferromagnetic/Antiferromagnetic Disk Structures

Arekapudi, S. S. P. K.; Böhm, B.; Ramasubramanian, L.; Ganss, F.; Heinig, P.; Stienen, S.; Fowley, C.; Lenz, K.; Deac, A. M.; Albrecht, M.; Hellwig, O.

Abstract

Topological spin textures such as skyrmions, merons, and vortices in antiferromagnetic (AFM)/ ferromagnetic (FM) materials are actively explored for utilization in future data storage and signal processing devices. An emergent half-integer spin texture such as a magnetic vortex can be stabilized in a soft magnetic NiFe disk structure. Due to the topological nature, the unwinding of the magnetic vortex phase is mediated by the dynamic creation and subsequent annihilation of magnetic singularities, such as Bloch points. This process enables the formation of intermediate topological phases such as vortex-antivortex (V-AV) pairs and edge states. Interfacial interactions between an AFM and a topologically non-trivial spin structure of a FM can stabilize and extend the lifetime of V-AV phases, which are typically considered intrinsic and dynamic are imaged using high-resolution in-field magnetic force microscopy. Additionally, these interactions are used to protect the emerged chirality in an otherwise degenerate chiral spin system, rather than to introduce a preferred chirality.

Keywords: Topological defects; Vortex-Antivortex pairs; Antiferromagnet/Ferromagnet; Chirality in magnetism; High resolution magnetic imaging; Magnetic Vortex

Involved research facilities

Related publications

Downloads

Permalink: https://www.hzdr.de/publications/Publ-30955