Two-fluid model simulations of isothermal stratified counter-current flow of air and water with interface compression and turbulence damping


Two-fluid model simulations of isothermal stratified counter-current flow of air and water with interface compression and turbulence damping

Tekavčič, M.; Meller, R.; Schlegel, F.; Končar, B.

Abstract

Stratified flows of water and steam can appear in the primary system of a pressurized water reactor during a hypothetical loss-of-coolant accident. Among others, important safety concerns during cold water injection of the emergency core cooling system include the pressurized thermal shock and the possible formation of a condensation induced water hammer. Both mechanisms could cause significant thermal and mechanical stresses on the components of the primary system. Thorough knowledge of turbulent heat and mass transfer processes near the interface is required for safety analyses of both phenomena.
Measurements of industrially relevant turbulent two-phase flows tend to be difficult; therefore computational fluid dynamics simulations represent an important additional analytical tool. The main objective of the present research and development is to advance the capabilities of current state-of-the-art modeling tools towards the simulations of two-phase flow phenomena under realistic reactor conditions. In the present paper, the focus is on turbulence modelling near the gas liquid interface in stratified flows.
An isothermal stratified counter-current flow of air and water in a rectangular channel is simulated. Computational domain and boundary conditions are based on the flow conditions in the test section of the WENKA experiment [1]. The validation case considers supercritical stratified flow with Froude number of 2.36 and Reynolds number 12000 for water and 27000 for air.
The two-fluid modeling approach with interface compression is used to resolve the interface between the two phases. A consistent momentum interpolation numerical scheme is applied, featuring the partial elimination algorithm to handle the strong interphase drag coupling at a resolved interface. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach is used to describe turbulent two-phase flow. Modelling of turbulence dissipation at the interface requires a special treatment that includes introduction of additional turbulence damping terms into the k-ω Shear Stress Transport (SST) turbulence equations. Simulations, model and source code development are performed with the open source C++ library OpenFOAM.
Simulation results are validated with the measured profiles of volume fraction, velocity and turbulent kinetic energy at two streamwise positions in the test section of the WENKA experiment. Results of the mesh sensitivity study are presented. Furthermore, results of a parametric study reveal that an asymmetric damping approach with a lower coefficient on the liquid side of the interface can improve the prediction of turbulent kinetic energy profiles.

[1] Stäbler, T., Meyer, L., Schulenberg, T., & Laurien, E. (2006). Turbulence Structures in Horizontal Two-Phase Flows Under Counter-Current Conditions. Proceedings of FEDSM2006 (pp. 61–66). ASME.

  • Vortrag (Konferenzbeitrag)
    International Conference Nuclear Energy for New Europe NENE2020, 07.-10.09.2020, Portorož, Slovenia
  • Beitrag zu Proceedings
    International Conference Nuclear Energy for New Europe, 07.-10.09.2020, Portorož, Slovenia,
    Two-fluid Model Simulations of Isothermal Stratified Counter-current Flow of Air and Water with Interface Compression and Turbulence Damping, 715.1-715.9

Permalink: https://www.hzdr.de/publications/Publ-31013