Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry


Comparative Analysis of Mononuclear 1:1 and 2:1 Tetravalent Actinide (U, Th, Np) Complexes: Crystal Structure, Spectroscopy, and Electrochemistry

Bansal, D.; Kaden, P.; Patzschke, M.; März, J.; Schmidt, M.

Abstract

Six mononuclear tetravalent actinide complexes (1-6) have been synthesized using a new Schiff base ligand 2-methoxy-6-(((2-methyl-1-(pyridin-2-yl)propyl)imino)methyl)phenol (HLpr). The HLpr is treated with tetravalent actinide elements in varied stoichiometry to afford mononuclear 1:1 complexes [MCl3-Lpr∙nTHF] (1-3) and 2:1 complexes [MCl2-Lpr2] (4-6) (M = Th4+ (1 and 4), U4+ (2 and 5) and Np4+ (3 and 6)). All complexes are characterized using different analytical techniques such as IR, NMR, and absorption spectroscopy as well as crystallography. UV-vis spectroscopy revealed more red-shifted absorption spectra for 2:1 complexes as compared to 1:1 complexes. 1H NMR of Th(IV) complexes exhibit diamagnetic spectra whereas U(IV) and Np(IV) complexes revealed paramagnetically shifted 1H NMR. Interestingly, NMR signals are paramagnetically shifted between -70 to 40 ppm in 2 and 3, but are confined within -35 to 25 ppm in 2:1 complexes 5 and 6. Single crystal structures for 1:1 complexes revealed an eight-coordinated Th(IV) complex (1) and seven-coordinated U(IV) (2) and Np(IV) (3) complexes. Whereas, all 2:1 complexes 4-6 were isolated as eight-coordinated isostructural molecules. The geometry around the Th4+ center in 1 is found to be trigonal dodecahedral and, capped trigonal prismatic around U(IV) and Np(IV) centers in 2 and 3, respectively. Whereas, An4+ centers in 2:1 complexes are present in dodecahedral geometry. Importantly, 2:1 complexes exhibit increased bond distances in comparison to their 1:1 counterparts as well as interesting bond modulation w.r.t. ionic radii of An(IV) centers. Cyclic voltammetry displays an increased oxidation potential of the ligand by 300 to 500 mV, after coordination with An4+. CV studies indicates Th(IV)/Th(II) reduction beyond −2.3 V whereas attempts were made to identify redox potentials for U(IV) and Np(IV) centers. Spectroscopic binding studies reveal that complex stability in 1:1 stoichiometry follows the order Th4+≈ U4+ > Np4+.

Keywords: Actinides; Coordination; Electrochemistry; Crystal structure

Downloads

Permalink: https://www.hzdr.de/publications/Publ-34786