Local and Nonlocal Curvature-induced Chiral Effects in Nanomagnetism


Local and Nonlocal Curvature-induced Chiral Effects in Nanomagnetism

Volkov, O.; Pylypovskyi, O.; Kakay, A.; Kravchuk, V. P.; Sheka, D. D.; Faßbender, J.; Makarov, D.

Abstract

The interplay between geometry and topology of the order parameter is crucial properties in soft and condensed matter physics, including cell membranes [1], nematic crystals [2,3], superfluids [4], semiconductors [5], ferromagnets [6] and superconductors [7]. Until recently, in the case of magentism, the influence of the geometry on the magnetization vector fields was addressed primarily by the design of the sample boundaries, aiming to tailor anisotropy of the samples. With the development of novel fabrication techniques allowing to realize complex 3D architectures, not only boundary effects, but also local curvatures can be addressed rigorously for the case of ferromagnets and antiferromagnets. It is shown that curvature governs the appearance of geometry-induced chiral and anisotropic responses [6-8].

Here we provide experimental confirmations of the existence of local and non-local curvature-induced chiral interactions of the exchange and magnetostatic origin in conventional soft ferromagnetic materials. Namely, we will present the experimental validation of the appearance of exchange-driven Dzyaloshinskii-Moriya interaction interaction (DMI, local effect) for the case of conventional achiral yet geometrically curved magnetic materials [9,10]. This curvature induced DMI is predicted to stabilize skyrmions [11] and skyrmionium states [12]. Furthermore, we will address the impact of nonlocal magnetostatic interaction on the properties of curvilinear ferromagnets, which enables the stabilization of topological magnetic textures [13,14], realization of high-speed magnetic racetracks [15] and curvature-induced asymmetric spin-wave dispersions in nanotubes [16]. Furthermore, symmetry analysis demonstrates the possibility to generate a fundamentally new chiral symmetry breaking effect, which is essentially nonlocal [13]. Thus, geometric curvature of thin films and nanowires is envisioned as a toolbox to create artificial chiral nanostructures from achiral magnetic materials.

References:

[1] H. T. McMahon and J. L. Gallop “Membrane curvature and mechanisms of dynamic cell membrane remodelling”, Nature 438, 590 (2005).
[2] T. Lopez-Leon, V. Koning, K. B. S. Devaiah, V. Vitelli and A. Fernandez-Nieves, “Frustrated nematic order in spherical geometries”, Nature Physics 7, 391 (2011).
[3] G. Napoli, O. V. Pylypovskyi, D. D. Sheka and L. Vergori, “Nematic shells: new insights in topology- and curvature-induced e ff ects”, Soft Matter 17, 10322-10333 (2021).
[4] H. Kuratsuji, “Stochastic theory of quantum vortex on a sphere”, Phys. Rev. E 85, 031150 (2012).
[5] C. Ortix, Phys, “Quantum mechanics of a spin-orbit coupled electron constrained to a space curve”, Phys. Rev. B 91, 245412 (2015).
[6] D. D. Sheka, O. V. Pylypovskyi, O. M. Volkov, K. V. Yershov, V. P. Kravchuk and D. Makarov, “Fundamentals of Curvilinear Ferromagnetism: Statics and Dynamics of Geometrically Curved Wires and Narrow Ribbons”, Small 18, 2105219 (2022).
[7] D. Makarov, O. M. Volkov, A. Kakay, O. V. Pylypovskyi, B. Budinská and O. V. Dobrovolskiy, “New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures”, Adv. Mater. 34, 2101758 (2022).
[8] Y. Gaididei, V. P. Kravchuk and D. D. Sheka, “Curvature Effects in Thin Magnetic Shells”, Phys. Rev. Lett. 112, 257203 (2014).
[9] O. M. Volkov, D. D. Sheka, Y. Gaididei, V. P. Kravchuk, U. K. Rößler, J. Fassbender and D. Makarov, ”Mesoscale Dzyaloshinskii-Moriya interaction: geometrical tailoring of the magnetochirality”, Sci. Rep. 8, 866 (2018).
[10] O. M. Volkov, A. Kákay, F. Kronast, I. Mönch, M.-A. Mawass, J. Fassbender and D. Makarov, “Experimental observation of exchange-driven chiral effects in curvilinear magnetism”, Phys. Rev. Lett. 123, 077201 (2019).
[11] V. P. Kravchuk, D. D. Sheka, A. Kákay, O. M. Volkov, U. K. Rößler, J. van den Brink, D. Makarov and Y. Gaididei, “Multiplet of Skyrmion States on a Curvilinear Defect: Reconfigurable Skyrmion Lattices”, Phys. Rev. Lett. 120, 067201 (2018).
[12] O. V. Pylypovskyi, D. Makarov, V. P. Kravchuk, Y. Gaididei, A. Saxena and D. D. Sheka, “Chiral Skyrmion and Skyrmionium States Engineered by the Gradient of Curvature”, Phys. Rev. Appl. 10, 064057 (2018).
[13] D. D. Sheka, O. V. Pylypovskyi, P. Landeros, Y. Gaididei, A. Kákay and D. Makarov, “Nonlocal chiral symmetry breaking in curvilinear magnetic shells”, Commun. Phys. 3, 128 (2020).
[14] C. Donnelly, A. Hierro-Rodrı́guez, C. Abert, K. Witte, L. Skoric, D. Sanz-Hernández, S. Finizio, F. Meng, S. McVitie, J. Raabe, D. Suess, R. Cowburn and A. Fernández-Pacheco, “Complex free-space magnetic field textures induced by three-dimensional magnetic nanostructures”, Nat. Nanotech. 17, 136–142 (2022).
[15] M. Yan, A. Kákay, S. Gliga and R. Hertel, “Beating the Walker limit with massless domain walls in cylindrical nanowires”, Phys. Rev. Lett. 104, 057201 (2010).
[16] J. A. Otálora, M. Yan, H. Schultheiss, R. Hertel and A. Kákay, “Curvature-induced asymmetric spin-wave dispersion”, Phys. Rev. Lett. 117, 227203 (2016).

Keywords: Curvature-induced effects; Chiral effects; Nanomagnetism

  • Vortrag (Konferenzbeitrag)
    The 67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 31.10.-04.11.2022, Minneapolis, USA

Permalink: https://www.hzdr.de/publications/Publ-35246