Performance boost of a collective qutrit refrigerator


Performance boost of a collective qutrit refrigerator

Kolisnyk, D.; Schaller, G.

Abstract

A single qutrit with transitions selectively driven by weakly-coupled reservoirs can implement one of the world's smallest refrigerators. We analyze the performance of N such fridges that are collectively coupled to the reservoirs. We observe a quantum boost, manifest in a quadratic scaling of the steady-state cooling current with N. As N grows further, the scaling reduces to linear, since the transitions responsible for the quantum boost become energetically unfavorable. Fine-tuned inter-qutrit interactions may be used to maintain the quantum boost for all N and also for not-perfectly collective scenarios.

Keywords: open quantum systems; Lindblad equation; Redfield equation; collective effects; quantum absorption refrigerator; qutrits; Holstein-Primakoff transform; quadratic boost; nonequilibrium steady state

Downloads

Permalink: https://www.hzdr.de/publications/Publ-35273