Dual Mode Strain–Temperature Sensor with High Stimuli Discriminability and Resolution for Smart Wearables


Dual Mode Strain–Temperature Sensor with High Stimuli Discriminability and Resolution for Smart Wearables

Xiao, H.; Li, S.; He, Z.; Wu, Y.; Gao, Z.; Hu, C.; Hu, S.; Wang, S.; Liu, C.; Shang, J.; Liao, M.; Makarov, D.; Liu, Y.; Li, R.-W.

Abstract

Strain and temperature are important physiological parameters for health monitoring, providing access to the respiration state, movement of joints and inflammation processes. The challenge for smart wearables is to unambiguously discriminate strain and temperature using a single sensor element assuring a high degree of sensor integration. Here, we report a dual-modal sensor with two electrodes and tubular mechanically heterogeneous structure enabling simultaneous sensing of strain and temperature without cross-talk. The sensor structure consists of a thermocouple coiled around an elastic strain-to-magnetic induction conversion unit, revealing a giant magnetoelastic effect, and accommodating a magnetic amorphous wire. The thermocouple provides access to temperature and its coil structure allows to measure impedance changes caused by the applied strain. The dual-modal sensor also exhibits interference-free temperature sensing performance with high coefficient of 54.49 μV/°C, low strain and temperature detection limits of 0.1% and 0.1 °C, respectively. We demonstrate the use of these sensors in smart textiles to monitor continuously breathing, body movement, body temperature and ambient temperature. The developed multifunctional wearable sensor is needed for applications in early disease prevention, health monitoring and interactive electronics as well as for smart prosthetics and intelligent soft robotics.

Keywords: smart wearables; dual sensing

Permalink: https://www.hzdr.de/publications/Publ-36881