Demographic effects of aggregation in the presence of a component Allee effect


Demographic effects of aggregation in the presence of a component Allee effect

Jorge, D. C. P.; Martinez Garcia, R.

Abstract

Intraspecific interactions are key drivers of population dynamics because they establish relations between individual fitness and population density. The component Allee effect is defined as a positive correlation between any fitness component of a focal organism and population density, and it can lead to positive density dependence in the population per capita growth rate. The spatial population structure is key to determining whether and to which extent a component Allee effect will manifest at the demographic level because it determines how individuals interact with one another. However, existing spatial models to study the Allee effect impose a fixed spatial structure, which limits our understanding of how a component Allee effect and the spatial dynamics jointly determine the existence of demographic Allee effects. To fill this gap, we introduce a spatially-explicit theoretical framework where spatial structure and population dynamics are emergent properties of the individual-level demographic and movement rates. Depending on the intensity of the individual-level processes, the population exhibits a variety of spatial patterns, including evenly spaced aggregates of organisms, that determine the demographic-level by-products of an existing individual-level component Allee effect. We find that aggregation increases population abundance and allows populations to survive in harsher environments and at lower global population densities when compared with uniformly distributed organisms. Moreover, aggregation can prevent the component Allee effect from manifesting at the population level or restrict it to the level of each independent group. These results provide a mechanistic understanding of how component Allee effects might operate for different spatial population structures and show at the population level. Because populations subjected to demographic Allee effects exhibit highly nonlinear dynamics, especially at low abundances, our results contribute to a better understanding of population dynamics in the presence of Allee effects and can potentially inform population management strategies.

Permalink: https://www.hzdr.de/publications/Publ-37907