Design considerations for table-top, laser-based VUV and X-ray free electron lasers


Design considerations for table-top, laser-based VUV and X-ray free electron lasers

Grüner, F.; Becker, S.; Schramm, U.; Eichner, T.; Fuchs, M.; Weingartner, R.; Habs, D.; Meyer-Ter-Vehn, J.; Geissler, M.; Ferrario, M.; Serafini, L.; van der Geer, B.; Backe, H.; Reiche, S.; Lauth, W.

Abstract

Abstract A recent breakthrough in laser-plasma accelerators, based upon ultrashort high-intensity lasers, demonstrated the generation of quasi-monoenergetic GeV-electrons. With future Petawatt lasers ultra-high beam currents of ∼100 kA in ∼10 fs can be expected, allowing for drastic reduction in the undulator length of free-electron-lasers (FELs). We present a discussion of the key aspects of a table-top FEL design, including energy loss and chirps induced by space-charge and wakefields. These effects become important for an optimized table-top FEL operation. A first proof-of-principle VUV case is considered as well as a table-top X-ray-FEL which may also open a brilliant light source for new methods in clinical diagnostics.

Keywords: FEL, laser acceleration, PACS 41.60.Cr; 52.38.Kd

Downloads

Permalink: https://www.hzdr.de/publications/Publ-10504