Dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons


Dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons

Richter, C.; Karsch, L.; Dammene, Y.; Metzkes, J.; Schramm, U.; Sobiella, M.; Schürer, M.; Weber, A.; Zeil, K.; Pawelke, J.

Abstract

An Integrated DOsimetry and Cell Irradiation System (IDOCIS) with laser-accelerated proton beams was developed, characterized, calibrated and successfully used for systematic in vitro experiments. Due to the broad exponentially shaped energy spectrum, the low energy range of the protons (< 20 MeV) and the high pulse dose, the absolute dosimetry for this beam quality is challenging. Therefore, a dedicated Faraday cup is used as an energy and dose rate independent absolute dosimeter that has been calibrated consistently with three independent methods. A transmission ionization chamber providing online relative dose information is cross-calibrated against the Faraday cup. Providing both online and absolute dose information the IDOCIS allows for quantitative dosimetric and radiobiological studies at current low-energy laser-accelerated proton beams. Finally, first dosimetric characterizations of a laser-accelerated proton beam with the IDOCIS are presented.

Keywords: laser particle acceleration; proton; dosimetry; faraday cup; radiochromic films

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

Permalink: https://www.hzdr.de/publications/Publ-15148