Optimierung des Energiefensters für I-124 anhand von Monte-Carlo Simulationen und PET-Messungen an Kleintier- und Human-Tomographen


Optimierung des Energiefensters für I-124 anhand von Monte-Carlo Simulationen und PET-Messungen an Kleintier- und Human-Tomographen

Sauerzapf, S.; Zakhnini, A.; Behe, M.; Thomas, L.; Axer, M.; Weber, W.; Pietrzyk, U.; Mix, M.

Abstract

Ziel/Aim:

Die Verwendung des nichtreinen Positronenstrahlers I-124 bietet aufgrund seiner Halbwertszeit von 4,18 Tagen Vorteile bei der Quantifizierung von langsamen biochemischen Prozessen. Nachteilig bei I-124 ist das komplexe Zerfallsschema. Der Anteil an Positronen liegt nur bei 22,8%. Zusätzlich werden koinzidente g -Linien mit Energien emittiert, die innerhalb des am PET-Scanner verwendeten Energiefensters liegen. Ziel dieser Arbeit ist es, das Energiefenster für die PET-Akquisition so zu optimieren, dass ein möglichst geringer Anteil an falschen Koinzidenzen auftritt. Dazu wurden Monte-Carlo Simulationen gerechnet, und Phantome an verschiedenen Kleintier- und Humanscannern gemessen.

Methodik/ Methods:

Die Monte-Carlo Simulationen wurden mit Hilfe von GATE (1) für die Scanner ClearPET (Raytest) und Gemini TF (Philips) sowie für unterschiedliche Phantome durchgeführt. Um die zusätzlich zum Positronenzerfall auftretenden koinzidenten g -Linien im Energiespektrum zu unterscheiden, wurde die I-124 Aktivität nicht als Ionenquelle, sondern alle g -Linien als reine Gammaemitter und die Positronenemission als quasikontinuierliches Energiehistogramm definiert. F-18 wurde als Ionenquelle definiert und als Vergleichsstandard verwendet. Die
Energiespektren wurden für die verschiedenen Bereiche im Phantom hinsichtlich der wahren und gestreuten Koinzidenzen unterschieden. Neben den Messungen mit den o.g. Phantomen für I-124 und F-18 am ClearPET und PET/CT Gemini TF 64 wurden vergleichende Messungen am MicroPET Focus 120 (Concorde) und am ECAT EXACT (Siemens) gemacht.

Ergebnisse/ Results:

Die Simulationen zeigen, dass im Vergleich zu F-18 die I-124 Energiespektren mehr Counts speziell im niederenergetischen Bereich (<350keV) aufweisen. Dies resultiert aus den zusätzlich koinzidenten g -Linien, die als wahre Koinzidenzen gewertet werden. Da die Energieverteilung der g -Linien exponentiell verläuft, wird durch die Wahl einer höheren unteren Energieschwelle (450keV anstatt 250 bzw. 350keV) ein Großteil der falschen
Koinzidenzen herausgefiltert. Die Energieauflösung des PET-Scanners bestimmt dabei die Qualität dieser Maßnahme, was sich in den Phantommessungen an den unterschiedlichen Scannern bestätigt. Besonders deutlich wird dies zwischen dem BGO- und dem LYSOHumanscanner. Durch das engere Energiefenster am Gemini TF wird mit I-124 im Phantom eine auf 10% genaue Quantifizierung sowie annähernd keine Streuanteile in kalten Phantombereichen festgestellt.

Schlussfolgerungen/ Conclusions:

Die Simulationen erlauben eine sehr gute Abschätzung, inwieweit sich bei den PET-Scannern die Akquisition mit dem Isotop I-124 durch Einschränkung des Energiefensters verbessern lässt. Die Phantommessungen zeigen, dass gute quantitative Ergebnisse mit I-124 erreicht werden können.

Literatur:

(1) S. Jan /et al /2004 GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49
4543–4561

  • Poster
    NuklearMedizin2011, 13.-16.04.2011, Bregenz, Österreich

Permalink: https://www.hzdr.de/publications/Publ-15195