Ga ion irradiation induced spin reorientations in Co films


Ga ion irradiation induced spin reorientations in Co films

Mazalski, P.; Maziewski, A.; Tekielak, M.; Ferré, J.; Jaworowicz, J.; Mougin, A.; Liedke, B.; Liedke, M. O.; Fassbender, J.

Abstract

Some years ago, it has been demonstrated that after submitting Pt/Co/Pt films to increasing ion irradiation dose, one observes a decrease of: (i) perpendicular magnetic anisotropy (up to reach a spin reorientation transition (SRT) towards an in-plane magnetisation state); (ii) coercive field; (iii) Curie temperature (see e.g. [1-3]). In thicker Co films, by increasing the Ga ion dose, two successive inverse SRTs take place [4].
Pt(4.5nm)/Co(2.6nm)/Pt(3.5nm) films were deposited by sputtering on a sapphire substrate. 1mm wide strip regions were irradiated by 30 keV Ga ions under different doses D ranging from 2x1013 to 3x1014 Ga ions/cm2. Samples were studied by polar Kerr PMOKE (out-of-plane magnetization component sensitive), magneto-optical microscopy and local scanning magnetometry using a focused light beam. In-plane magnetized domains were studied using longitudinal magneto-optical Kerr effect, LMOKE. Magnetic Force Microscopy (MFM) was used to image domain patterns at higher spatial resolution. TRIDYN simulations were performed to estimate irradiation driven changes of the in-depth ion distributions. The irradiation driven SRTs are illustrated in Fig.1. Magnetization lies in-plane in the non-irradiated (NI) region. When increasing D, two successive SRTs undergo between planar to perpendicular magnetization states, and again back to a planar state (through a canted magnetization state, as shown from the magnetization curve obtained for D=3x1014 Ga ions/cm2).

This work was partly supported by the EU-“Research Infrastructures Transnational Access” program “Center for Application of Ion Beams in Materials Research” under contract no. 025646 and DAAD.

[1] C. Chappert, H. Bernas, et al., Science 280, 1919 (1998)
[2] J. Ferré and J.-P. Jamet, in Handbook on Magnetism and Advanced Materials. Eds H. Kronmüller and S. Parkin Vol. 3, 1710 (2007).
[3] Fassbender and J. McCord, J. Magn. Magn. Mat. 320 (2008).
[4] J. Jaworowicz, A. Maziewski, P.Mazalski, M.Kisielewski, I. Sveklo, M. Tekielak, V. Zablotski, J. Ferré, N. Vernier, A. Mougin, A. Henschke, J. Fassbender, Appl. Phys. Lett., 95, 022502 (2009).

Keywords: irradiation; SRT; TRIDYN

Beteiligte Forschungsanlagen

Verknüpfte Publikationen

  • Poster
    IV Euro-Asian Symposium “Trends in MAGnetism”: Nanospintronics. EASTMAG – 2010, 28.06.-02.07.2010, Ekaterinburg, Russia

Permalink: https://www.hzdr.de/publications/Publ-15212