Electron Temperature Scaling in Laser Interaction with Solids


Electron Temperature Scaling in Laser Interaction with Solids

Kluge, T.; Cowan, T.; Debus, A.; Schramm, U.; Zeil, K.; Bussmann, M.

Abstract

A precise knowledge of the temperature and number of hot electrons generated in the interaction of shortpulse high-intensity lasers with solids is crucial for harnessing the energy of a laser pulse in applications such as laser-driven ion acceleration or fast ignition. Nevertheless, present scaling laws tend to overestimate the hot electron temperature when compared to experiment and simulations. We present a novel approach that is based on a weighted average of the kinetic energy of an ensemble of electrons. We find that the scaling of electron energy with laser intensity can be derived from a general Lorentz invariant electron distribution ansatz that does not rely on a specific model of energy absorption. The scaling derived is in perfect agreement with simulation results and clearly follows the trend seen in recent experiments, especially at high laser intensities where other scalings fail to describe the simulations accurately.

Keywords: Laser; Electron; Proton; Ion; Temperature; Energy; Scaling; PIC; Model; Analytic; Acceleration; TNSA

  • Physical Review Letters 107(2011), 205003
    DOI: 10.1103/PhysRevLett.107.205003
    Cited 96 times in Scopus
  • Vortrag (Konferenzbeitrag)
    Dresden Enlite, 16.-20.04.2012, Dresden, Deutschland
  • Poster
    Dresden Enlite, 16.-20.04.2012, Dresden, Deutschland
  • Poster
    33rd International Workshop on Physics of High Energy Density in Matter, 13.-18.01.2013, Hirschegg, Österreich
  • Vortrag (Konferenzbeitrag)
    SPIE Optics+Optoelectronics, 15.-18.04.2013, Prag, Tschechische Republik

Permalink: https://www.hzdr.de/publications/Publ-16259